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▪ In conclusion, measurements of the electron 
beam on the BTS:FS3 screen were made.

▪ At 7 GeV beam energy leaving the booster, 
over the charge densities investigated (𝜌 ≤
10 fC μm−2), an approximately 10 % reduction 
of the imaging intensity due to quenching of 
the scintillator was observed.

▪ At the charge densities investigated (𝜌 ≤
10 fC μm−2), even though we start to observe 
nonlinear behaviour of the scintillator, Figs. 2, 
6 show negligible change to the measured 
beam sizes.

▪ However, at charge areal densities 𝜌 ≥
10 fC μm−2, one should anticipate that the size 
of the electron beam determined from the 
scintillation profile would become increasingly 
unreliable.

▪ In the present work, we use a 7 GeV electron 
beam coming from the booster, imaged using 
the fluorescent screen BTS:FS3 [10].

▪ Quenching of the scintillator reduces the light 
output of the scintillator at locations on the 
screen with highest charge density.
− In effect, this results in fitting the ‘tails’ of the 

distribution, and essentially it appears that 
the image of the beam on a scintillator is 
larger than the rms electron beam size.

▪ We evaluate the electron beam size as a 
bivariate Gaussian distribution, in order to 
quantify the areal charge density.
− The equation of a bivariate Gaussian 

distribution in coordinates 𝑥𝑖, with means 𝜇𝑖, 
standard deviations 𝜎𝑖 and is given by 
\cite{do_2008}:
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− Hence an electron beam with a profile that 
is Gaussian in two dimensions with root 
mean square beam sizes 𝜎1, 𝜎2, we can 
describe the peak electron charge density 𝜌
by:

𝜌 =
𝑞

2 𝜋𝜎1𝜎2

▪ APS-U swap-out injection 
necessitates ~17 nC electron 
bunches at 6 GeV.

▪ Diagnostic imaging screens are 
envisaged in the BTS.

▪ Important to determine whether 
the response of these screens to 
charge is linear.

▪ In the present work, we examine 
the effect of sublinear intensity 
quenching of a Cerium-doped 
Yttrium-Aluminium-Garnet 
scintillator screen.

▪ At 7 GeV, charge density 𝜌 ≤
10 fC μm−2, approximately 10 % 
reduction of the imaging intensity 
due to scintillator quenching.

▪ Saturation of scintillator screens 
has represented a challenge for 
beam imaging at many facilities 
– in particular linacs – e.g.
recently at Euro-XFEL [1].

▪ At the APS, prior work on 
scintillator linearity included 
experiments using the electron 
linac [2, 3].

▪ With high-charge bunches 
through the BTS transport line 
for the Advanced Photon Source 
Upgrade (APS-U), will scintillator 
linearity with charge be a 
significant detrimental effect?
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▪ Scintillator quenching occurs 
when charge density of incident 
beam depletes the vacancies in 
the crystal, and the crystal does 
not produce light output at a rate 
proportional to the input charge 
density [4–6].

▪ We consider limits to quenching 
of the scintillator along the theory 
of Birks [7].

▪ Results in approximate upper 
charge density limits of 
16 fC μm−2 for LYSO scintillators 
[8], and 20 fC μm−2 for YAG:Ce
scintillators [9].
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RESULTS – FOCUSSED BEAM

Figure 1: Images of the beam 
with charge. (a) 0.52 nC. (b) 1.06 
nC. (c) 3.2 nC. (d) 4.6 nC.

RESULTS – REGULAR BEAM

▪ Quenching is possible in Chromox
Al2O3: Cr , however contemporary 

applications of Chromox scintillators 
for imaging are typically proton rather 
than electron beams.

▪ Optical Transition Radiation (OTR) 
has no quenching limit: the limit is 
probably the damage threshold of the 
material surface. In practice, if an 
electron bunch is short (~tens of fs 
duration), the practical limit for OTR 
is probably the presence of Coherent 
Optical Transition Radiation.

▪ Even for bunches of ~ps duration, 
COTR will occur when there is 
microbunching, or if there is a narrow 
current spike.

Figure 2: Fitted electron beam 
sizes as a function of electron 
beam charge.

Figure 3: Fitted peak intensity as 
a function of electron beam 
charge.

Figure 4: Intensity as a function of 
peak charge areal density.

Figure 5: Images of the beam as 
a function of charge. (a) 0.070 
nC. (b) 0.15 nC. (c) 0.50 nC. (d) 
1.0 nC. (e) 1.5 nC. (f) 2.0 nC.

Figure 6: Fitted electron beam 
sizes as a function of electron 
beam charge.

Figure 7: Fitted peak intensity as 
a function of electron beam 
charge.

Figure 8: Intensity as a function of 
peak charge areal density.


