DESIGN OF A W-BAND CORRUGATED WAVEGUIDE FOR STRUCTURE WAKEFIELD ACCELERATION

Brendan Leung¹, Xueying Lu^{1,2}, Philippe Piot^{1,2}, Cassandra Phillips¹, Scott Doran², and John Power²

1: Department of Physics, Northern Illinois University, Dekalb, IL 60115 USA

2: Argonne National Laboratory, Lemont, IL 60439 USA

ABSTRACT

- Structure Wakefield Acceleration (SWFA) in the terahertz (THz) regime:
 - Aims to provide high-gradient high-efficiency acceleration
 - Enables more compact and cost-effective accelerators
- A W-band corrugated waveguide has been designed for a collinear wakefield acceleration experiment at the Argonne Wakefield Accelerator (AWA)
 - Structure optimized for maximum gradient for the nominal AWA electron bunch at 65 MeV

STRUCTURE DESIGN

• Unit cell design of the W-band corrugated waveguide in CST Eigenmode solver High shunt impedance and high gradient

• Analytical theory and simulations show good agreement - Accelerating gradient of 84.6 MV/m achieved with a 10 nC Gaussian bunch

INTRODUCTION

• Advantages of THz structures for SWFA combined with bunch shaping techniques¹:

- High gradient:

- High shunt impedance => Stronger beam interaction
- High frequency structure with short RF pulse => Lower breakdown rate²

- High efficiency:

- Longitudinal bunch shaping => transformer ratio (acc. gradient over dec. gradient) past theoretical limit of 2 for symmetric bunches
- **Compact** structure from small transverse size
- Collinear acceleration test planned at Argonne Wakefield Accelerator (AWA)

• A full structure of 80 cells (plus two end cells) modeled using CST Microwave Studio to minimize reflection

WAKEFIELD SIMULATIONS

Wakefield excitation in the full structure simulated in CST Wakefield solver

Wake potential

BENCHMARKING WITH THEORY AND OTHER CODES

- 3 types of benchmarking done
 - #1: Analytical theory vs. CST:

400-]
	#1: Analytical	— theory
E 200	theory we CST	OCT

- Electric field plot with peak gradient of 84.6 MV/m on axis, when a 10 nC, 0.5 mm Gaussian electron bunch traverses the structure
- Future study: Gradient improvement with a shaped bunch
 - Expected gradient of ~200 MV/m with a transformer ratio of 5 from a 10 nC shaped bunch

- Analytical assumptions³: (1) $d, t + v \ll a$ and $d \gtrsim t + v$ (2) Relativistic bunch
- Analytical gradient calculated by $E_z = \frac{1}{4\pi\epsilon_0} \frac{2q}{a^2} e^{-\omega^2 \sigma^2/2c^2}$

- #3: CST #2: CST Eigenmode vs.ECHO1D vs. Wakefield - Eigenmode CST Wakefield 87.5 300 •– Wakefield ECHO1D 87.0 200 (m 86.5 -(V/pC) 100 Wakefield - 0.98 dient -100ت _{85.5} ق -200 85.0 -300 84. 0.022 0.024 plate thickness (cm) s (cm)
- Good agreement with CST at high frequencies
- #2: CST Eigenmode vs. Wakefield:

• Gradient calculated with unit cell parameters from Eigenmode as

- $E_z = \frac{2qk_L}{1 \frac{v_g}{v_g}} e^{-\omega^2 \sigma^2/2c^2}$
- Good agreement (~1.4% error)
- **#3: CST and ECHO1D:**
 - Good agreement between CST and another wakefield calculation code, ECHO1D

FUTURE PLANS

- Mechanical design and structure fabrication
 - Electroforming, wire-EDM, laser micromachining, additive manufacturing, etc.
- Experimental setup at AWA
- Application of advanced bunch shaping techniques

ACKNOWLEDGEMENTS

This research was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award DE-SC0022010 and DE-SC0021928. The work at the AWA was funded through the U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357.

• A W-band corrugated waveguide designed at 110 GHz for highgradient high-efficiency wakefield acceleration

CONCLUSIONS

- Accelerating gradient of 84.6 MV/m achieved with a 65 MeV Gaussian electron bunch of 10 nC and 0.5 mm long
- Successful benchmarking between analytical theory and simulation codes, and between various codes
- Mechanical design and fabrication in progress
- Higher gradient expected with a longitudinally shaped bunch
- Collinear wakefield acceleration experiment planned for AWA with bunch shaping techniques to achieve high-gradient high-efficiency acceleration

REFERENCES

1. Ha, Gwanghui & Kim, Kwang-Je & Piot, P. & Power, J. & Sun, Y., "Bunch Shaping in Electron Linear Accelerators.", in Rev. Mod. Phys., vol. 94, p.025006, May 2022. 2. Lu, Xueying et al., "Advanced RF Structures for Wakefield Acceleration and High-Gradient Research.", in Proc. Snowmass'22, March 2022. 3. Stupakov, Gennady, "Using pipe with corrugated walls for a subterahertz free electron laser.", in Phys. Rev. ST Accel. Beams, vol. 18, p.030709, March 2015.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

University