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Abstract
In NSLS-II storage ring, during the user operation, fast-

acquisition (FA) 10 kHz Beam Position Monitor (BPM)
data are collected and their spectral properties are analyzed.
Various periodograms and spectral peaks are being provided
every minute, and they are very useful in identifying any
changes in the orbit. Unfortunately, because of the big size of
the data, only several numbers are being continually archived
for the later study and the full raw data are saved only by
hand when needed. We are developing methods utilizing
tensor decomposition techniques to save and analyze the FA
data and the paper is reporting the current status.

INTRODUCTION
As the user facility providing high-performance syn-

chrotron light to the user, NSLS-II invests efforts constantly
to maintain and improve the electron beam stability. As one
of the efforts, we keep monitoring the 10 kHz BPM FA data
properties. That is, every minute, we measure FA data for
all BPMs for 10 seconds and their spectrum properties are
displayed in the control system studio (CSS) pages. Because
of the number of BPMs are more than 400 when we take
account of the planes for each BPM, on top of the individual
properties, representative spectrum properties are also dis-
played. The representative plots include averaged spectrum
properties for dispersive region, non-dispersive region and
ID BPMs.

Even though the plots are quite helpful and convenient
tools to monitor the beam stability, all the FA data cannot
be kept for the later use because of the big file size, and
only some typical numbers are archived. Even though the
archived numbers such as peak frequencies, power spectra
are very useful, the contained information cannot be com-
pared to the full FA data. Furthermore, the plots and the
representative numbers are just being refreshed every minute,
and picking up the moment when some variation is involved
in beam stability is not easy.

In short, we searched the solution which compress the
FA data to the reasonable size to keep all the files generated
every minute and, at the same time, can provide several
representative numbers showing the orbit status in real time.
As a strong candidate, we tried the tensor decomposition
analysis (TCA) which is well established in biology and
medical society.

In the following sections, we introduce the TCA and shows
how it is applied to NSLS-II storage ring FA data, together
with the current status.

∗ Work supported by DOE under contract No. DE-SC0012704.
† jchoi@bnl.gov

TENSOR DECOMPOSITION
For the analysis of the matrices, principal component

analysis (PCA) methods like singular value decomposition
(SVD) or independent analysis (ICA) are well established
and are playing critical roles in various fields of expertise.
Similar techniques for high-dimensional array (tensor) are
also well developed and being actively used in biology and
medical society [1].

The main purpose of such analysis is identifying the lim-
ited number of factors which can explain the major part of
the data. That means we can find low-rank representation of
the tensor which can be used in compressing the data. The
low-rank representation can reveal the factors behind the
data. Also, we can have physical meanings for the identified
factors.

There are several popular decomposition techniques [1],
but here we choose CANDECOMP/PARAFAC (CP) decom-
position. The CP decomposition is simple and small num-
ber of parameters can represent the tensor. Therefore, the
method can compress the data efficiently when the system
has clear low-rank behaviors.

Different from the biological or medical system, the phys-
ical system such as storage ring has a few clear physical
parameters which dominate the beam behaviors. If we as-
sume that the three-dimensional tensor X has 𝑅 ranks, with
the CP decomposition, it can be expressed as

X ≈
𝑅∑︁
𝑟=1

𝑢
(1)
𝑟 ◦ 𝑢 (2)

𝑟 ◦ 𝑢 (3)
𝑟 (1)

where 𝑢𝑟 ’s are vectors for each dimension and ◦ is outer
product. The schematic diagram of CP decomposition is
shown in Fig. 1.

Figure 1: Diagram of CP decomposition (courtesy of Jean
Kossaifi).

As in the case of matrix SVD, the magnitudes of 𝑢𝑟 vectors
are arbitrary as far as the products gives the correct tensor.
Therefore, usually they are normalized and additional scale
factors are introduced. Then, Eq. (1) can be represented as

X ≈
𝑅∑︁
𝑟=1

𝜆𝑟 × 𝑢
(1)
𝑟 ◦ 𝑢 (2)

𝑟 ◦ 𝑢 (3)
𝑟 . (2)
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APPLICATION
As mentioned, NSLS-II generates FA data every minute

for the analysis. These files cannot be archived but they
are temporarily saved for about one hour. While they are
available in the file system, we stack the data and make a 3-
dimensional tensor. In fact, the FA data file is not generated
every minute and the number of collected data sets in one
hour is about 45. And if we collect for four hours, the number
is around 180.

The FA data is 10 kHz and measured for 212 BPMs, con-
sidering that BPM measures the beam position in horizontal
and vertical plane, the matrix size for a measurement is
100, 000 × 424. Even though the data is measure for 10 sec-
onds for the high resolution in the analysis, it is practically
not possible to save and apply the TCA to the collection of
the full data. For TCA, we collects the data corresponding
1 second, 10, 000 × 424 matrices, periodically and the final
tensor size becomes ∼ 10, 000 × 424 × 140 for 1-hr, and
∼ 10, 000 × 424 × 180 for 4-hr data collections.

If we decompose the tensor constructed by stacking the
FA data, the 𝑢𝑟 vectors correspoinding rank 𝑟 in Eq. (1) or
(2) can be interpreted as

• 𝑢 (1)
𝑟 : 10 kHz temporal vector (10,000 elements).

• 𝑢 (2)
𝑟 : Spatial vector around the ring (424 elements).

• 𝑢 (2)
𝑟 : Trend vector throughout the data acquisition (num-

ber of data sets).

We installed the script for the data collection and decom-
position, and it is running periodically. The decomposition
is performed only the desired number of data sets are col-
lected. Once the desired number is collected, the tensor
is decomposed by 𝑟𝑇𝑒𝑛𝑠𝑜𝑟 library [2] in 𝑅 programming
language. Here, we would like to note that, in rTensor, the
𝑢 vectors in Eq. (2) are normalized with L1-norm. The CP
decomposition algorithm requires the number of ranks in
advance and we decompose the tensor with 1, 2, 3, and 10 as
the number of ranks, which will be called as 1-rank, 2-ranks,
3-ranks, and 10-ranks decomposition in this paper.

The 1-rank, 2-ranks, and 3-ranks decompositions give
information about how many ranks are involved during the
given time span. As the measure of the number of ranks
of the tensor, the closeness of the reconstructed tensor to
the original tensor can be used. 10-ranks decomposition is
included for the case full data is needed because when 10
is assigned as the number of ranks, it is almost always sure
that the orginal tensor is reconstructed with more than 99%
in whatever situation. In 𝑟𝑇𝑒𝑛𝑠𝑜𝑟, the property is called
𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 and expressed in Frobenius norm of tensor.
That is 𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 can be expressed as

𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =
(
1 − ||X𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 − X||

| |X||

)
× 100. (3)

In other words, 𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 100% means the compressed
vectors can restore the original tensor perfectly.

At the first stage of the FA monitoring using the TCA,
we used 4-hr data for the analysis. However, the computing
time for the decomposition is too long and, more importantly,
reviewing the stability every four hours is too late to respond
to any variation. We reduce the time span to one hour and
it turned out the time span is optimal in both aspects, the
computing time and the reviewing period.

ANALYSIS
Since the TCA is running from June 2022, the typical

𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 value for 1, 2, 3, and 10-ranks decomposi-
tions are shown in Table 1.

Table 1: Typical 𝑁𝑜𝑟𝑚_𝑃𝑒𝑟𝑐𝑒𝑛𝑡 Values When the Number
of Ranks are Given as 1, 2, 3, and 10

ranks 1 2 3 10
𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 99.35% 99.37% 99.37% 99.40%

Data Compression
As can be seen in Table 1, in most cases the tensor

can be considered as rank-1 with noise. In this case we
can compress the tensor of elements 10, 000 × 424 × 𝑁 to
10, 000 + 424 + 𝑁 , with 𝑁 ∼ 45 or 180 depending on the
data collection time span, one hour or four hours. In either
case, the data size is compressed to less than 0.01% while
the reconstructed tensor is more than 99% of the original
tensor. Even when we save all the decompositions, ranks
with 1, 2, 3, 10, the compressed size is less than 1% of the
original tensor.

When the data is decomposed, all the 𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡s are
logged and we can detect the variations in the beam stability
by these numbers because the difference in 𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡s
with different ranks provide the measure of the disturbance
of the beam stability.

Since the TCA system is running in the NSLS-II storage
ring, there were only three times when the 𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡
of 1-rank decomposition drops below 99%. Two of them
are identified as BPM glitches and, in the other case, a very
small variation in orbit spectrum could be identified.

These cases are described in the follwings.

Case 1
From the tensor data, collected during 2022-7-13 04:24 ∼

08:23, the resulting 𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡s are shown as Table 2.

Table 2: 𝑁𝑜𝑟𝑚_𝑃𝑒𝑟𝑐𝑒𝑛𝑡 Values Logged in Case 1

ranks 1 2 3 10
𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 68.26% 99.04% 99.04% 99.39%
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From Table 3, we can see that the 1-rank decomposition
is not enough to explain the orbit behavior, but it could be
understood with 2-ranks decomposition. Because, differ-
ent from matrix SVD, the 𝜆 values in Eq. (2) are neither
guaranteed to be positive nor the vectors are orthogonal,
some rearrangements are needed to identify which mode
in 2-ranks corresponds to 1-rank decomposition. Figs. 2
and 3 shows the spatial and trend vectors of the 2-ranks
decomposition vectors while the 1𝑠𝑡 rank of 2-ranks vec-
tors are almost equivalent to 1-rank decomposition vectors.
It is not shown here, but the 2𝑛𝑑 rank temporal vector has
non-physical spectrum.

Figure 2: 2-ranks decomposition spatial vector for case 1.

Figure 3: 2-ranks decomposition trend vector for case 1.

From Figs. 2 and 3, we can conclude that there was a glith
in 59𝑡ℎ BPM (BPM Cell08-7) at around July 13, 18:00.

Case 2
For the decompositions of the data collected during

2022-7-13 14:27 ∼ 15:25, the 𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡s are shown
as Table 3.

Table 3: 𝑁𝑜𝑟𝑚_𝑃𝑒𝑟𝑐𝑒𝑛𝑡 Values Logged in Case 2

ranks 1 2 3 10
𝑛𝑜𝑟𝑚_𝑝𝑒𝑟𝑐𝑒𝑛𝑡 98.98% 99.15% 99.30% 99.38%

In this case, we also investigate the decomposition result
for 2-ranks. Similar to the case 1, the 1𝑠𝑡 rank vectors are
almost identical to the 1-rank decomposition vectors. The
relative magnitude of 2𝑛𝑑 rank to the 1𝑠𝑡 rank motion in
2-ranks decomposition (𝜆2/𝜆1 of Eq. (2)) is about 0.6×10−3.
That is, in 2-ranks decomposition, the 2𝑛𝑑 rank motion can
be considered as a weak perturbation.

Figures 4-6 show the 2-ranks decomposition vectors for
the case 2. From the figures, we can conclude that the low
frequency motion (< 10 Hz) was slightly amplified especially
around cell 17 upstream region at 15:15 ∼ 20 on July 13.

Figure 4: Power spectrum density of 2-ranks decomposition
temporal vector for case 2.

Figure 5: 2-ranks decomposition spatial vector for case 2.

Figure 6: 2-ranks decomposition trend vector for case 2.

SUMMARY
Using the TCA, the NSLS-II storage ring FA data for all

BPMs measured every minute are being archived in effi-
ciently compressed files. The decomposition used for the
compression are also providing orbit stability information
in real time. Also, when the full data are needed, they can
be reconstructed from the compressed data so that they are
close enough to the original data for any analysis.
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