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Abstract
The High Voltage Converter Modulators (HVCM) used to 

power the klystrons in the Spallation Neutron Source (SNS) 
linac were selected as one area to explore machine learn-
ing due to reliability issues in the past and the availability 
of large sets of archived waveforms. Progress in the past 
two years has resulted in generating a significant amount 
of simulated and measured data for training neural network 
models such as recurrent neural networks, convolutional 
neural networks, and variational autoencoders. Applications 
in anomaly detection, fault classification, and prognostics 
of capacitor degradation were pursued in collaboration with 
the Jefferson Laboratory, and early promising results were 
achieved. This paper will discuss the progress to date and 
present results from these efforts.

INTRODUCTION
The SNS uses a linac to accelerate protons to an energy 

of 1 GeV using high power RF delivered from klystrons. 
The klystrons are in turn power by HVCMs which convert 
13.8 kVAC to up to 130 kV, 1.3 ms long pulses at 60 Hz [1]. A 
simplified schematic of a HVCM is shown in Fig. 1. Figure 2 
shows the layout of the SNS RF systems with 15 HVCMs, 
each driving multiple klystrons with the exception of the Cou-
pled Cavity Linac (CCL) section where each HVCM drives a 
single klystron. The transformer T1, rectifier (Rec) and filter 
capacitors C1 and C2 convert the 13.8 kVAC to ±1300 VDC. 
Insulated-gate bipolar transistor (IGBT) switches Qa1 to 
Qc4 switch at a nominal frequency of 20 kHz into pulse 
transformers which step the pulses up to high voltage. The 
high voltage pulses are then combined in parallel, rectified 
and filtered to produce the 1.3 ms, 60 Hz pulse train with 
an apparent switching frequency of 120 kHz. HVCMs have 
historically been a source of significant machine downtime 
at SNS, and still represent a significant percentage of lost 
user time. The HVCMs use a PXI based controller which 
digitizes up to 32 waveform channels at 50 MHz. Waveform 
and settings files are saved whenever there is a fault, and dec-
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imated to 2.5 MS/s and saved approximately 30 minutes after
turn on or after HVCM settings have changed. We recently
opened-source the normal and fault data from the 15 HVCM
powering the SNS, which are described in this paper [2] and
can be downloaded from this Mendeley repository [3].

Figure 1: Simplified schematic of a HVCM.

Figure 2: Layout of SNS RF system.

In addition to the HVCM real waveforms, a LTspice model
(based on the SPICE circuit simulator) [4] of the HVCM
circuit has been developed and validated, which we are us-
ing to generate a large amount of simulated data to model
changes in values of circuit components and certain operat-
ing conditions such as IGBT switching frequency. To enable
frequency modulation in the simulation, LTspice was cou-
pled with MATLAB/SIMULINK. MATLAB is also being
used for automation of LTspice execution to sweep ranges
of component values. This helps generating LTspice simu-
lations to model degradation of components such as plastic
film capacitors. Thirteen of the waveforms related to the
DC capacitor voltage, IGBT current, pulse transformer flux,
and klystron voltage and current have been identified for
the machine learning (ML) effort, since those have been the
most useful in troubleshooting past failures. Figure 3 shows
a comparison between the LTspice simulated waveform and
a measured one for the magnetic flux in the A phase (A-flux).
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Figure 3: Simulated (LTspice) vs. measured waveform.

METHODS
We have tested variety of ML methods in this work, but

the ones that have shown best results belong to (1) recurrent
neural networks (RNN), (2) convolutional neural networks
(CNN), and (3) autoencoders (AE).

RNNs are adapted to work for time series or sequential
data. Given that we use signal data, RNNs are a good fit
due to their temporal nature. We have used different types
of RNN cells such as long short-term memory (LSTM)
and gated recurrent unit (GRU) [5]. We have also used bi-
directional layers to improve the performance, which train
two RNN simultaneously, the first is trained on the forward
time sequence as is, and the second on the reversed copy of
the time sequence; providing additional context.

AE are unsupervised neural networks used to learn data
representations. AE consists of encoder, bottleneck, and
decoder, where the bottleneck contains a compressed knowl-
edge representation of the original input. The input and
output layers of the AE are identical, and the quality of the
AE in reconstructing its input is assessed. In Fig. 4 (bottom),
we have developed a variational AE for anomaly detection,
which consists of five Conv1D (1D convolutional) layers
for the encoder and the decoder. Instead of encoding the
input space as a single point like classical AE, we encode the
input space as a distribution over the latent space, where the
input to the decoder is sampled from a normal distribution
N(𝜇, 𝜎).

We have also tested hybrid layers such as ConvLSTM,
which is a type of RNN for spatio-temporal prediction that
has convolutional structures in both the input-to-state and
state-to-state transitions. ConvLSTM resolves the drawback
of the fully-connected LSTM by retaining spatial informa-
tion using the convolutional layers. Figure 4 (top) shows our
ConvLSTM AE architecture for anomaly detection, which
consists of Conv1D layers followed by ConvLSTM layers.

RESULTS
Fault Detection

The ConvLSTM is used for anomaly detection on the
HVCM system powering the RFQ section (radio-frequency
quadrupole). The ConvLSTM is trained to learn how to
accurately reproduce the normal waveforms (e.g. C-flux).
Now the difference between model prediction (reconstructed

waveform) and the original waveform is called reconstruc-
tion error, which helps the analyst to determine an error
threshold for the AE. When feeding an anomaly waveform
to the AE, the AE struggles in reconstructing that waveform
since it deviates from the normal training data. As a result,
a larger reconstruction error is observed that exceeds the
threshold, leading to anomaly detection. The confusion ma-
trix results based on the test set are shown in Fig. 5. This
shows a very good performance by the ConvLSTM AE, as
the system was able to identify 39 out of the 50 faults, while
keeping the false positive events low (8 out of 81 are false
positive). The model can be improved by collecting more
data from the RFQ module.

Similarly, we applied the variational AE in Fig. 4 (bot-
tom) to detect the anomalies in the measured waveforms
by accounting for the system and operational differences
between the modules. In this application, all modulators
that belong to RFQ, DTL (drift-tube linac), CCL, and SCL
(super-conducting linac) have been included through a one-
hot encoding input to the decoder (see Fig. 4). The concept
of training the variational AE is similar to ConvLSTM. The
receiver operating characteristic (ROC) curve, which de-
scribes the relationship between the true positive and false
positive rates, is shown in Fig. 6. A perfect model would
have a 1.0 true positive rate at zero false positive rate. Al-
though our model is not perfect, it still provides up to 60%
true positive rate for false positive rate within 10%, implying
we can detect 60% of the anomalies in the HVCM with this
model. The performance challenges for the variational AE
originate from both the data limitation for certain modules,
and the differences in their operating conditions, which are
reflected in their waveform topology. The data used in this
analysis can be found here [2, 3].

Prognostics of Capacitor Degradation
We have produced LTspice simulations for the CCL sys-

tem. The CCL was arbitrarily chosen as a representative
module and was used to match the parameters of (e.g. fre-
quency modulation, voltages, inductances, etc) in LTspice;
only the three capacitor values (Ca, Cb, Cc) in Fig. 1 were
varied. The final candidate model was obtained after Hyper-
band optimization and contains four Conv1D layers, which
extract salient features from the waveforms. The output of
these four layers is flattened and fed into three independent
branches each containing a short fully-connected layer com-
posed of 16 nodes feeding into one node. These outputs are
then concatenated to form an output vector containing the
three predicted capacitances. The input to the model fea-
tures 10 different simulated waveform types, namely, IGBT
current in the 3 phases (6), magnetic flux (3), and modula-
tor voltage (1). A five-fold cross validation was employed
to produce a trained network with 676 samples withheld
as a test set, and the remaining 2704 samples are used for
training. The resulting predictions on all capacitance values
can be found in Fig. 7, showing very small percent error on
both the training and testing sets. Samples of real pulses
from the CCL - collected close to when the capacitances
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Figure 4: Autoencoder architectures used for anomaly detection: ConvLSTM (top) variational convolutional (bottom).

Figure 5: Confusion matrix for ConvLSTM for RFQ system.

Figure 6: ROC curve for the variational AE for multiple
systems.

were measured - were truncated and aligned to match the
simulation and then fed through the resulting network. Pre-
liminary results in Table 1 show between a 1 and 7 percent
error on predicting the capacitances of Ca, Cb, and Cc us-
ing the proposed model. For reference, the manufacturer’s
tolerance is approximately 10%. These promising results
show that a well-trained ML model can be used to predict the
capacitance value, which is essential to model the capacitor
degradation; enabling accurate prognostics.

Figure 7: Capacitance prediction error on training and test-
ing (withheld) datasets by CNN.

Table 1: Prediction of Measured Capacitor Values by CNN

Item Ca (pF) Cb (pF) Cc (pF)

CNN 3135.8 3369.6 3419.5
Measured 3170 3160 3220
Relative Diff. (%) 1.1 6.6 6.2

CONCLUSIONS
Significant research progress has been done in developing

and exploring ML models to improve the reliability of the
HVCM at the SNS. The next goal for the team will focus
on leveraging ML models such as generative adversarial
networks (GAN) for fault classification to be able to identify
the fault type (e.g. multi-class classification). In addition,
we will extend the capacitor degradation prognostics to cover
real dynamic measurements. This will involve a designed
experiment setup at which the degraded capacitor values
will be measured at different times, and the ML model will
be tested in predicting those measurements.
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