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Abstract

The Continuous Electron Beam Accelerator Facility (CE-
BAF) operates hundreds of superconducting radio frequency
(SRF) cavities in its two main linear accelerators. Field emis-
sion can occur when the cavities are set to high operating
RF gradients and is an ongoing operational challenge. This
is especially true in higher gradient SRF cavities. Field
emission results in damage to accelerator hardware, gener-
ates high levels of neutron and gamma radiation, and has
deleterious effects on CEBAF operations. Therefore, field
emission reduction is imperative for the reliable, high gradi-
ent operation of CEBAF that is required by experimenters.
In this paper, we explore the use of deep learning architec-
tures via multilayer perceptron and the use of tree-based
models to simultaneously model radiation measurements
at multiple detectors in response to arbitrary gradient dis-
tributions. These models are trained on collected data and
could be used to minimize the radiation production through
gradient redistribution. This work builds on previous efforts
in developing machine learning (ML) models, and is able
to produce similar model performance as our previous ML
model without requiring knowledge of the field emission
onset for each cavity.

INTRODUCTION

CEBAF is a high energy, recirculating continuous wave
linear accelerator (linac) that delivers accelerated electron
beams for experimental research in nuclear physics [1,2].
Field emission is an ongoing operational challenge in CE-
BAF superconducting radio frequency (SRF) cavities. When
SREF cavities are exposed to high operating RF gradient, elec-
trons are emitted from the walls of the SRF cavities resulting
in field emission [3,4]. As the field emission has deleteri-
ous effect overall on CEBAF operation, it is mandatory to
mitigate field emission for the reliable operation of CEBAF.

One of the primary negative effects of field emission is
radiation production caused when field emitted electrons are
accelerated and collide with another material. Each cavity
has a unique gradient threshold over which field electrons
are emitted, and these threshold values change over time.
Measuring these thresholds requires an invasive procedure
that disrupts beam delivery.
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CEBAF is equipped with a purpose built neutron detection
system, the NDX system. NDX detectors are capable of
detecting both neutron and gamma radiation, and represent
our best means of measuring the radiation produced by field
emission throughout a linac during radio frequency (RF)
system operation.

In this paper, we use a multilayer perceptron (MLP) based
artificial neural network (ANN) architecture and the tree-
based XGBoost (Extreme Gradient Boosting) model [5]
to model the gamma and neutron radiation measured at six
NDX detectors at the end of the North Linac based on nearby
cavity RF gradients. The above mentioned models may sup-
port radiation minimization through gradient redistribution.
The purpose of this work is to find a best model capable of
modeling the radiation readings at NDX detectors given a
set of nearby cavity gradients.

MATERIALS AND METHOD
Experimental Set Up and Data Collection

Jefferson Lab installed the new NDX detectors around
the CEBAF in the summer of 2021. In August 2021, we
measured the gamma and neutron radiation response of four
C100 cryomodules (1L22-1L25) at the end of the CEBAF’s
north linac after NDX commissioning completed. We chose
this small section of linac due to its high density of nearby
NDX detectors and those cryomodules’ history of field emis-
sion. We recorded the NDX measured dose rates as we
stepped cavity gradients downward from their operation
maximums in a process we refer to as a gradient scan. Gra-
dient scans occurred in the absence of the electron beam,
but with the RF system powered on. All cavities in the linac
were set to their expected operational settings, but only the
cavities in the four chosen C100s were changed during the
study. We took multiple readings at each gradient configu-
ration. Control system data from the collection process is
shown in Fig. 1. More details on the data collection process
are given in a previous publication [1].

Dataset and Data Preprocessing

We focus on the gradient scan data of zones 1122 through
1L.25 taken during August 2021. Radiation measurements
were used from the six NDX detectors at 11.22-1L.27. Zone
1126 was unpopulated at this time. This data includes 32
cavity gradients to be used as model inputs, and 12 radiation
measurements (one gamma and one neutron reading from
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Figure 1: Time series waveform of Gradient (first plot),
gamma (second plot) and neutron (third plot) measurement.

each of the six detectors) to be used as known model out-
puts. These values represent snapshots in time during the
data collection process after RF gradients had stabilized at
their new setpoint. Our data consists of three types, cavity
gradients (MV/m, input), neutron radiation (rem/h, output),
and gamma radiation (rem/h, output). Each class of data has
measurements taken at multiple locations. These measure-
ments differ in scale between and within data classes. Cavity
gradients could range from 0-25 MV/m, but are less than
21.5 MV/m in practice. The NDX detectors have a very high
dynamic range [6]. During our gradient scans, we found a
max gamma dose rate of ~142 rem/h at a single detector and
a max neutron dose rate of ~14.4 rem/h at a single detector.

The dataset used in this paper contains total 17610 data
points measured from 1793 gradient combinations. We split
the data into training, validation, and test sets using 64% in
training, 16% in validation and 20% in testing. Examples
from each gradient combination were grouped together and
randomly assigned to one of the three sets. This group-
based shuffling scheme prevents highly similar examples
that are based on repeat measurements from appearing in
both the training and testing sets. After data partitioning,
we normalize both input and output using MinMaxScaler
normalization technique. The whole data processing and
model learning is illustrated in Fig. 2.

METHOD

We consider a basic deep learning model, the feed forward
or multilayer perceptron (MLP) network and the XGBoost
as a best model among tree-based models. We have de-
signed various MLP models of two and three hidden layers.

The diagram shown in Fig. 3 gives the baseline model ar-
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Figure 3: A baseline multilayer perceptron architecture with
two hidden layers. Note: both inputs and outputs are indi-
vidually normalized.

chitecture. The model inputs are cavity gradients, and its
outputs are the predicted gamma and neutron radiation mea-
surements at nearby NDX detectors. Using trial and error,
we developed a two-layer MLP model that provides low
loss across the multiple outputs. Additional details of the
model are given in Fig. 3. We optimized the sum of mean
squared error (MSE) losses across all normalized radiation
signals using stochastic gradient descent (SGD). For XG-
Boost, we use the software library’s default model hyperpa-
rameters (n_estimators=100, max_depth=6, max_leaves=0,
min_child_weight=1), but found a learning rate of 0.2 to
yield better performance. We score model performance us-
ing the R-squared, mean squared error (MSE), and mean
absolute error (MAE) metrics.

RESULTS AND DISCUSSION

As outlined above, we develop two models for predicting
the radiation measurements in a portion of a linac based
solely on cavity gradients. We find that both models perform
extremely well on the collected data. This is demonstrated
in the performance metrics given in Table 1 as well as the
nearly on-diagonal nature of the observed vs predicted plots
for both models (Figs. 4 and 5). While performance is
generally similar, the XGBoost model appears to have a
slight advantage. The MLP model, while requiring a large

number of training epochs, shows model convergence around :

1000 epochs and lack obvious signs of overfitting (Fig. 6).
Validation error plateaus while training error continues to
decrease, and the model’s average loss is similar across both
the validation and test sets.

Neither model requires feature engineering to achieve
good performance. This is important as our previous model
required explicit knowledge of each cavity’s field emission

Table 1: Training, Validation and Test Results of MLP and
XGBoost Model

Model Metrics Training Validation Test
R? 0.989 0.986 0.985

MLP MSE 2.806 4.005 4.148
MAE 0.853 1.015 0.985
R? 0.998 0.986 0.986

XGBoost MSE 0.383 2911 2.622
MAE 0.345 0.853 0.794

Figure 2: Data processing and model development pipeline.
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R2=Coefficient of determination, MSE=Mean squared
error, MAE= Mean absolute error
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Figure 4: Observed vs predicted plots for gamma radiation
(rem/h) by the MLP (top) and XGBoost (bottom) models for
test dataset.
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Figure 5: Observed vs predicted plots for neutron radiation
(rem/h) by the MLP (top) and XGBoost (bottom) models for
test dataset.

onset for use in calculating input features. Determining field
emission onset requires an invasive measurement that inter-
rupts beam delivery and is typically not performed. In spite
of this simplification to the inputs, our model performance
remains similar and may even have been slightly improved.

While these models both perform extremely well on the
data collected within a narrow time window, we have discov-
ered challenges in applying them to CEBAF during a run.
The challenge largely relates to the constantly changing na-
ture of CEBAF. Existing field emitters improve or degrade,
new field emitters appear, and cavity gradients are adjusted
as components break, problems fixed, or the linac energy
changes due to experimental requirements. The challenges
of data drift and concept drift are inherent to the online na-
ture of a complex machine like CEBAF. This drift results
in a dramatic decrease in model performance. We are cur-
rently investigating mitigation strategies using parasitic data
collection during CEBAF operations that obviate the need
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Figure 6: Training and Validation loss for MLP model.

for time intensive gradient scans and possible improvements
to our gradient scan procedures.

CONCLUSION

In this paper, we apply MLP model and XGBoost model to
effectively model the radiation measurement at the multiple
detectors of NDX system based exclusively on RF cavity gra-
dients. Both models perform very well on the given test set
collected in August 2021 and neither require further feature
engineering or other invasive measurements. While further
work is required in order to keep these models performing
well during the length of a run spanning few months in the
face of changing operational conditions, we have demon-
strated a basic model that is capable of predicting radiation
on readily available machine data.
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