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Abstract 
The penetrating radiography provided by the Dual Axis 

Radiographic Hydrodynamic Test (DARHT) facility is a 
key capability in executing a core mission of the Los Ala-
mos National Laboratory (LANL).  A new suite of software 
is being developed in the Python programming language to 
support operations of the of two DARHT linear induction 
accelerators (LIAs).  Historical data, built as hdf5 data 
structures for over a decade of operations, are being used 
to develop automated failure and anomaly detection soft-
ware and train machine learning models to assist in beam 
tuning.  Adaptive machine learning (AML) techniques that 
incorporate physics-based models are being designed to 
use non-invasive diagnostic measurements to address the 
challenge of time variation in accelerator performance and 
target density evolution.  AML methods are also being de-
veloped for experiments that use invasive diagnostics to 
understand the accelerator behavior at key locations, the 
results of which will be fed back into the accelerator mod-
els.  The status and future outlook for these developments 
will be reported, including how Jupyter notebooks are be-
ing used to rapidly deploy these advances as highly-inter-
active web applications.  

DATA STRUCTURES AND 
ANALYSIS TOOLS 

A new systematic data representation of 
calibrated DARHT accelerator diagnostics data has 
been developed that includes relevant information 
needed to describe the data as well as model the beam 
tune (i.e., metadata). Open-source Python libraries are 
used to load and calibrate DARHT data which include: 
 Shot Based Data:

o Scalar Data
o Vector Data (e.g., waveforms and spectra)
o 2D Arrays (e.g., camera images)

 Calibration Data:
o Waveform attenuation
o Integrator time constants
o Time offsets
o Scale factors

 Processing Information:
o Waveform filter time scale
o Waveform processing time windows
o Configuration information for automated

warnings and alerts

The DARHT data are structured as xarray Dataset ob-
jects [1], which map directly onto the HDF5 file format [2]. 

Highly-interactive applications for DARHT data analy-
sis can be launched locally or hosted on a server and used 
by multiple users through web browsers.  These applica-
tions are built using HoloViz [3], a set of high-level Python 
packages, in a way that allows for rapid deployment of new 
analysis tools.  Figure 1 illustrates how increasingly 
higher-level packages are used to build interactive plots 
from named data arrays and high-level parameter objects. 
The apps are served directly from Jupyter notebooks either 
locally or from a serve, providing a convenient program-
ming platform for rapid development.   

Figure 1:  The graphic illustrates how increasingly higher-
level packages are used to build interactive plots from 
named data arrays and high-level parameter objects.  The 
apps are served directly from Jupyter notebooks either lo-
cally or from a server, providing a convenient program-
ming platform for rapid development. 

In order to promote code robustness and provide reusa-
bility, the data input/output and calibration/reduction mod-
ules are managed separately from interactive analysis and 
visualization tools.  New analysis methods and data pro-
cessing pipelines are typically developed using the IPython 
interactive interpreter [4] or a development environment 
like Spyder [5].  It is often more convenient to use Jupyter 
Notebook [6], a web-based application, for visualizing data 
and developing higher level analysis processes.   

Juptyer Notebooks can also be used to create highly in-
teractive analysis tools and dashboards from xarray Dataset 
objects and HoloViz libraries: 
 hvplot [7]: provides high-level plotting directly

from xarray data objects using Bokeh and
HoloViews.
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 param [8]: turns parameters with defined data types
into interactive widgets that can be used to set anal-
ysis and visualization parameters.

 panel [9]: used to organize interactive plots, param-
eters and tables; manage reactive functions and
callback methods; and deploy as web-server appli-
cation.

This framework has enabled the rapid development of 
DARHT analysis tools, including a general waveform cal-
ibration tool show in Figure 2.  Other examples of this type 
of interactive tool are available in the catemis python pack-
age [10], which is used to evaluate the operating tempera-
ture of the dispenser cathode that supplies electrons for the 
DARHT Axis-II accelerator.  As described in [11], three 
spot pyrometers are used to measure the temperature of the 
cathode and a camera is used to spatially monitor the tem-
perature uniformity. In the example shown in Figure 3, 
dozens of ‘param’ objects were used to allow the user to 
set a date and shot number that the analysis tool uses to 
locate and load a cathode camera image.  The spatial tem-
perature distribution is then calculated based on parameters 
that define the camera alignment and calibration parame-
ters used to convert the image intensity to temperature.   

MACHINE LEARNING 
Machine learning (ML) methods are beginning to be ap-

plied to DARHT data analysis.  A particularly interesting 
application is in predicting the radiograph spot size, which 
must be measured with an invasive diagnostic setup and is 
thus not always available.  Preliminary work has begun uti-
lizing neural networks to predict image spot sizes based on 
accelerator settings and non-invasive beam diagnostics. 
The spot size of each of the four DARHT Axis-II pulses 
are characterized by a scalar metric denoted MTF.  The 
neural network model allows for information from previ-
ous pulses to contribute to subsequent pulses as illustrated 
in Figure 4a).  Starting with a relatively limited set of data, 
the MTF values of the four pulses for three measurements 
were kept separate for use in model validation and all other 
data were used as training data for the ML model.  The ML 
model was then applied to the three sets of validation data 
to predict the spot size metric.  The ML model used con-
tains no actual physical model of the accelerator system 
and allows only enough freedom to provide a good, but not 
perfect, prediction of the true MTF metric for the training 
data set as show in Figure 4b).   The ML model performs 
nearly as well on the unseen validation data set.  While this 
initial sample size is relatively limited, the results are 
promising and we are actively building up larger datasets 
to further develop this predictive capability for both Axis-I 
and Axis-II.   

We anticipate that noise in accelerator diagnostic meas-
urements and changes over time in how accelerator com-
ponents respond to configuration settings will contribute to 
time-variation in the accelerator spot size.  To overcome 
these challenges, we have been developing adaptive ma-
chine learning (AML)-based tools by combining ML tools 
such as convolution neural network (CNN)-based encoder-
decoder architectures with model-independent adaptive 

feedback control algorithms [12, 13].  We also plan to in-
clude physics-informed learning using the mystic frame-
work [14–16]. 

ADAPTIVE ANALYSIS TOOLS 
We have also begun developing new techniques for 

waveform calibration to provide advanced baseline sub-
traction and numerical integration of differential signal 
measurements that are directly recorded with high-speed 

Figure 3: Example of DARHT Axis-II Cathode tempera-
ture interactive analysis application from the catemis py-
thon package. 

Figure 2:  Example of an interactive waveform calibration
application showing the raw differential waveforms (top)
and numerically integrated waveforms (middle) for two di-
agnostics in the Axis-II injector region. 
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digitizers.  The challenge in numerical integration is illus-
trated in Figure 2, where waveforms for two diagnostics in 
the Axis-II injector region that provide the same basic 
measurement, but use different digitizers, are shown for 
two sequential shots.  The repeatability for each is rela-
tively good, but the integrated signals for one diagnostic 
shows noticeable droop.  While this channel with the droop 
is not needed for accelerator operations, it illustrates the 
type of correction that might be needed as the response of 
a diagnostic system (including cables, digitizers, etc.) 
changes with time.  A general description of waveform pro-
cessing methods can be found in the Voss Scientific 
DAAAC software user’s manual [17].   

Some of the challenges in processing the accelerator 
Beam Position Monitor (BPM) data that have been previ-
ously described [18, 19] include variability due to noise 
from pulse power systems and environmental factors as 
well as systematic affects like aliasing due to the discrete 
number of B-dot loops in the BPM [20].  The impact of 
such issues in some cases is mitigated by the diagnostic 
design.  For example, the Axis-II B-dot loops are designed 
to have two output signals, which are proportional to the 
positive and negative rate of change of flux through the b-
dot loop plus any common signal in the loop.  Subtracting 
the signals provides twice the rate of change of flux with 
any common mode being subtracted out.  In the conven-
tional BPM analysis, other potential background from the 
pulse power is removed by subtracting the signal from a 
reference shot where the pulsed power was present but with 
no electron beam.   

The differential signals are too large to be directly input 
into digitizers, so inline attenuators are used to reduce the 
signal to between 200 mV to 5 V depending on the signal 
and digitizer type.  At some locations along the beamline, 
passive integrators are used to avoid some of the issues in-
troduced in numerical integration, particularly in the down-
stream transport after a kicker has been used to produce 
four short pulses from the long electron beam pulse.  To 
correct for the effective time constant of the passive inte-
grator signals, a droop correction must be applied that in-
volves numerical integration and scaling by a factor that 
has been experimentally determined. Because this scale 

factor, or more generally the underlying frequency re-
sponse of the system, may change with time in a way that 
is similar to what was illustrated in Figure 2, we are build-
ing adaptive techniques for waveform processing.   

Past reports have demonstrated that it is possible to 
achieve accurate and reliable enough beam position meas-
urements for accelerator operations [18]. This capability 
has been successfully maintained for more than a decade 
of continuous operations, over which time numerous re-
pairs and upgrades to accelerator and diagnostic compo-
nents have been made.  Noninvasive beam diagnostics, to-
gether with beam simulations, have for example been suc-
cessfully used to suppress beam-centroid motion [21]. 
However, the beam tuning process is time consuming and 
it is challenging to adjust for example for the failure or 
change in response of an accelerator component.  Our di-
agnostics systems also show signs of aging that are time 
consuming and often difficult to account for through com-
ponent repair and/or recalibration.  

FUTURE DEVELOPMENT 
We are developing advanced techniques that look to cap-

ture more complex signal propagation and background 
contributions by applying AML techniques to entire sys-
tems of diagnostic data and training surrogate models using 
large historical datasets in addition to accelerator simula-
tions.  We are also beginning to applying uncertainty quan-
tification (UQ) techniques in order to more robustly assign 
uncertainties to accelerator measurements including beam 
position, current and energy. In order to improve opera-
tions, we are also building tools to automatically detect 
anomalies and highlight potential issues to guide trouble-
shooting.  Through these efforts we expect to provide con-
tinued improvement to the accelerator performance and op-
erational efficiency. 
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Figure 4:  Spot size predictions for training and validation data for four pulses at DARHT based on magnet settings. 
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