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Abstract 
The self-consistent nonlinear dynamics of a relativistic 

charged particle beam, particularly through the interaction 
with its complete self-fields, is a fundamental problem 
underpinning many accelerator design issues in high 
brightness beam applications, as well as the development 
of advanced accelerators. A novel self-consistent particle-
mesh code, CoSyR, is developed based on a Lagrangian 
method for the calculation of the beam particles’ radiation 
near-fields and associated beam dynamics. Our recent 
simulations reveal the slice emittance growth in a bend and 
complex interplay between the longitudinal and transverse 
dynamics that are not captured in the 1D longitudinal 
static-state Coherent Synchrotron Radiation (CSR) model. 
We further show that surrogate models with symplectic 
neural networks can be trained from simulation data with 
significant time-savings for the modeling of nonlinear 
beam dynamics effects. Possibility to extend such 
surrogate models for the study of spin-orbital coupling is 
also briefly discussed. 

CSR MODELING WITH PARTICLE

MESH METHOD 

Nonlinear beam dynamics can arise from the 
nonlinearity of the lattice or the self-fields in an intense 
beam. These nonlinear dynamics are challenging to be 
modelled accurately and efficiently, especially over long 
term evolution. In Ref. [1], we have implemented a 
particle-mesh method for the self-consistent calculation of 
the self-fields of a high brightness beam, using 
wavefront/wavelet meshes following the characteristic of 
the Green’s function of the Maxwell equations. Based on 
the time scale of field propagation, these self-fields are 
either calculated exactly from the particle trajectory or 
approximated due to the close proximity of the emission. 
The former leads to retarded interactions among the beam 
particles that are typically paraxial but sensitive to 
model/numerical errors, while the latter describes close-by 
interactions for which the usual static-state model is 
applicable. For an emitting particle, both retarded and 
close-by contributions to the beam self-fields are then 
interpolated from the particle’s wavefront/wavelet meshes 
onto a moving mesh for dynamic update of the beam. This 

method allows radiation co-propagation and self-
consistent interaction with the beam in 2D/3D simulations 
at greatly reduced numerical errors. Multiple levels of 
parallelisms are inherent in this method and implemented 
in our code CoSyR to enable at-scale simulations of 
nonlinear beam dynamics on modern computing platforms 
using MPI, multi-threading, and GPUs. 

Beam Dynamics in Chicane Compressor 
For high brightness beam applications, such as free 

electron lasers, the transverse dynamics are of importance. 
Recently, there is interest to develop the understanding of 
the transverse effects of CSR beyond the 1D models, e.g., 
in Refs. [2, 3]. We have shown that the longitudinal and 
transverse beam dynamics in a bend happen in a complex 
manner [1], which is not captured in the 1D longitudinal 
CSR model. To further elucidate their role and interplay 
for a chirped beam in a chicane compressor, we simulated 
an initial beam of 50 MeV, 0.6 kA in a chicane with a 
compression ratio of about 3. CoSyR is used only for the 
first bend for 3 cases: without CSR, or with only 
longitudinal or full 2D steady-state CSR effect. The rest of 
the chicane is modeled with linear beam optics. The final 
beam slice emittance and current are compared in Fig. 1. 
The longitudinal CSR field introduces a large distortion of 
the current profile and slice emittance. However, much 
lower slice emittance growth is observed when the 
transverse field is also included in the simulation, and the 
beam profile is closed to the case without CSR.   

Figure 1: Beam slice remittances (left) and current profiles 
(right) without CSR, or with only longitudinal or full 2D 
steady-state CSR effect. 
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BEAM DYNAMIC MODELING WITH 

NEURAL NETWORKS 

The existing software for modeling particle beam 
dynamics is either limited to linear analysis or only 
provides the preliminary lattice design evaluation, while 
first-principle codes for spot-checking are too expensive 
for tackling inverse problems, parameter optimization and 
data-intensive applications. The successful deployment of 
a robust machine-learning (ML) based surrogate that 
embeds fundamental physical constraints to the interaction 
and evolution of such beams may significantly help the 
design and optimization of large scale accelerators. We 
explore the design of HenonNet [4] for a multi-physics 
nonlinear beam dynamic surrogate modeling capability 
that can be orders of magnitude faster than first-principle 
codes. Two examples are the nonlinear radiative effects of 
high brightness electron beams in linacs and transfer lines, 
and the stochastic spin dynamics in high energy polarized 
electron storage rings. For the former, the CSR fields can 
disrupt the beam transport in a complex manner as shown 
above. In spin dynamics, our interest is the study of the 
polarization in electron-positron storage rings. 

Network Architectures and Training  
In this work we propose several structure-preserving 

neural networks as a surrogate to approximate the flow 
maps corresponding to Hamiltonian beam dynamics. The 
most critical property of the flow maps � of Hamiltonian 
is the symplecticity, i.e., its Jacobian satisfies 
(��)�� �� = �, where � is the skew-symmetric matrix 
with zero diagonal blocks and ±� off-diagonal blocks. 
Note that all the linear symplectic matrices form a real Lie 
group ��(2�,�). This Lie group has been commonly used 
in accelerator physics to describe the dynamics, although a 
general flow map is nonlinear, which has not been fully 
explored yet in data-driven applications due to the lack of 
approximation tools. In this work, we will fill in the gap 
and propose two network architectures that can 
approximate linear or nonlinear symplectic maps. 
G-reflectors for Linear Symplectic Matrices  The 
optimization on ��(2�,�) has been recently explored 
in [5]. However, the approach therein is cumbersome to 
realise in a machine learning framework. In this work we 
propose a simple but very effective alternative approach 
that is naturally compatible with any ML framework. The 
idea is to first parameterize any symplectic matrix and then 
perform its optimization in the parameterized space. In 
particular, we define a G-reflector of �: = � + ����� 
where � is scalar and � is a vector in �2�. It is easy to show � is a symplectic matrix and its inverse is �−1 = � −�����, which is also symplectic. Note that any � is 
parameterized by 2� parameters (assume � is normalised). 
The theorem in [6] says that any real symplectic matrix can 
be expressed as a product of at most 4� G-reflectors. 
Therefore, by simply compositing 4n different G-
reflectors, we obtain a general parameterization of a 
symplectic matrix. This general architecture is called 
SympMat. It is well known that the symplectic group has 

a dimension of �(2� + 1) while the total parameterization 
in our SympMat architecture is 8�2, which is sup-optimal. 
However, since the beam dynamics is low-dimensional, 
SympMats work very well. 
HenonNets for Nonlinear Symplectic Maps  Our 
previous work [4] proposed a symplectic neural network–
HenonNets–that is a general symplectic nonlinear map and 
has a provable symplectic universal approximation 
property. However, the previous work only considered a 
low dimensional case of 2D Hamiltonians that is used to 
describe a divergence-free magnetic field in tokamaks. We 
generalise the previous network to 6D beam dynamics in 
this work. The basic building block of HenonNets is a 
Henon layer, which is defined as a map from (�,�) →
(�,  �) such that � = � + �, � = −� + ��(�) and � is a 
bias and �(⋅) is a scalar potential function represented as a 
neural network. Here both � and �(⋅) are learned in a ML 
framework in a supervised fashion. The Henon layer is 
then composited  4� times to become a HenonNet, which 
is thus symplectic by design. We note that when � = 0 and �(⋅) = 0, a HenonNet represents a trivial identity map. 
Since we rely on a HenonNet as a correction of a trained 
linear SympMat in this work, the HenonNet is typically 
initialised as an identity map using the above property. 

Network Implementation and Training     Our networks 
are deployed using Tensorflow. Both SympMats and 
HenonNets are implemented as custom models (and 
layers). The overall model is composed of a SympMat 
followed by a HenonNet. The general training workflow 
follows the standard procedure of transfer learning and fine 
tuning. We start with learning the SympMat for given data 
for linear beam dynamics and follow by learning the 
HenonNet with the learned SympMat being fixed. The 
final fine tuning stage uses a small learning rate to train the 
network. The training uses a loss of a standard mean-
squared error and it is supervised. The training data uses 
the particle trajectory data for one or several beams with 
different initial phase space, collected through tracking 
simulations of a chicane or of several turns in a ring. 

Application to Nonlinear Beam Dynamics 

In our preliminary study (Fig. 2), we have applied 
SympMat and HenonNet to the beam dynamics in a 
chicane bunch compressor. As discussed above, the 
electron beam brightness can be disrupted in a complex 
manner in self-consistent simulation beyond 1D model 
prediction, however, an accurate first-principle simulation 
requires ∼ 104 core-hours due to the ultrawide bandwidth 
of synchrotron radiation. As a first step, we focus on the 
nonlinear dynamics from the chicane itself and use particle 
tracking simulation data for training.  

The model is trained from the 4D phase space data (i.e., 
in the bending plane) of a nonlinear tracking simulation for 
a beam with 5% energy chirp at 130MeV designed for the 
compressor. Then the trained ML surrogate model is used 
to predict the dynamics of two beams with 10% energy 
chirp (i.e., unseen data). One beam has the same length 
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(leading to over compression) and the other beam is 2 times 
longer (so that the compression ratio remains the same). 
Figure 2 shows that both beam distributions are predicted 
reasonably well by the surrogate model. We note that the 
curved shape of the phase space in Fig. 2 is due to 2nd order 
nonlinearity of the chicane. It is also captured by our ML 
model and can be improved via better training procedures. 
This result indicates that such a physics-based surrogate 
model has the ability to extrapolate the learned 2nd order 
lattice nonlinearity on a trained dataset to that with another 
beam distribution.   

Figure 2: Preliminary HenonNet model prediction of the 
longitudinal phase space (δ=ΔE/E, τ: bunch length in cm) 
of electron beams with 10% initial energy chirp after a 
chicane compressor with length: (top) 2x longer, (bottom) 
same as the beam in the training data.   

Application to Spin Dynamics 
The electric and magnetic fields in a storage ring couple 

to the magnetic moments of electrons and exert a torque on 
the intrinsic angular momenta, causing the spins to precess. 
The spin precession is described by the Thomas- 
Bargmann-Michel-Telegdi equation (Thomas-BMT) [7]. 
The photon emission in synchrotron radiation affects the 
orbital motion of electrons in a storage ring and this can 
lead to an equilibrium particle distribution in phase space 
of a bunch. This is modelled by adding noise and damping 
to the particle motion [8, 9] in Monte-Carlo simulations. 
The photon emission also affects the spin motion and this 
can lead to the build-up of spin polarization which can 
reach an equilibrium resulting from a balance of three 

factors, namely the Sokolov-Ternov process, 
depolarization and the so-called kinetic polarization effect. 
One of the ways to study spin depolarization that avoids 
the long term Monte-Carlo simulations is the analysis of 
the lattice’s invariant spin field (ISF) - a spin field which 
is periodic and size one at every point of phase space. The 
ISF  ��(�, �) ,  satisfies����  = −∑ ����(�, �)6�=1 + �(�, �) × ��,  (1) ��(�, �)  =  ��(� + �, �), |��|  = 1,∀ �, �.  (2) 
Here, � ∈ ℝ2� (� =  1,2, or 3) is the phase space
variable, and � is accelerator azimuth. The ML algorithm
seeking the approximation to the ISF using the tracking 
data can be summarised as follows: 
● Train the SympMat/HenonNet for the orbital

dynamics as explained in earlier sections.
● Approximate the ISF by minimising the residual of

Eq. (1) under constraints Eq. (2), or alternatively
minimize the residual of�(�)��(�0, �)  =  ��(�0,�(�)),

where � and � are orbit and spin transport maps and �0 is
a fixed azimuth. 

CONCLUSION 

Self-consistent simulation indicates that transverse CSR 
fields can lead to slice emittance growth in a chicane. A 
physics-based ML surrogate model is also developed for 
the nonlinear beam dynamics and will be extended to 
collective and spin dynamics in future work. 
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