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Abstract
Particle accelerators utilize a large number of control pa-

rameters to generate and manipulate beams. Digital models
and simulations are often used to find the best operating
parameters to achieve a set of given beam parameters. Un-
fortunately, the optimized physics parameters cannot pre-
cisely be set in the control system due to, e.g., calibration
uncertainties. We developed a data-driven physics-informed
surrogate model using neural networks to replace digital
models relying on beam-dynamics simulations. This surro-
gate model can then be used to perform quick diagnostics of
the Argonne Wakefield accelerator in real time using nonlin-
ear least-squares methods to find the most likely operating
parameters given a measured beam distribution.

INTRODUCTION
Small-scale accelerator facilities supporting accelerator

R&D have often limited diagnostics with operating parame-
ters not precisely calibrated. The present research attempts
to develop a digital twin model of the Argonne Wakefield
Accelerator (AWA) where operating parameters dialed in the
control system (with calibration errors) are calibrated against
their physical values inferred from a Physics-informed surro-
gate model [1]. In this paper we discuss the development of
a surrogate model using the Object-Oriented Parallel Accel-
erator Library (OPAL) which simulates the beam dynamics
in the AWA beamline [2]. Our initial focus is to develop
a digital twin of the beam-generation and acceleration sec-
tion diagrammed in Figure 1. The section consists of an
RF-gun followed by a linac (L1). The beamline incoporates
3 solenoid magnets (BF, M, and LS1). This required training
a neural network to predict the outputs of 9 control param-
eters (the solenoid-magnet BF and M currents, the laser
spot size on the photocathode, the phase and amplitudes of
the RF gun and L1, and the transverse misalignment of L1)
in the form of an image representing the transverse beam
distribution captured at the scintillating screen YAG1. The
goal was to gather data from OPAL, and train a network to
predict the output that OPAL produced. After doing so, the
same network was to be applied to the accelerator itself so
that given an image one can infer the values of the 9 control
parameters . Many mathematical techniques were used to
aid in the creation and training of the neural network, which
will be described in subsequent sections of this paper.
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Figure 1: Overview of the AWA RF-gun and first linac con-
sidered for our surrogate model. The beam propagates from
left to right.

Figure 2: Unfiltered data set of YAG images. A good image
was identified and isolated.

DATA FILTERING
Inputs of the Neural Network are 9 control parameters as

vectors in R9, and our outputs are YAG images, uploaded as
32× 32 real-valued matrices. The data gathered from OPAL
was initially randomly generated. However, this resulted in
“unusable” data, and much of it had to be discarded. The
useful data was identified based on whether the beam fit
entirely within the dimensions of the generated image. To
sort the data based on this criteria, we displayed a collection
of images and searched for one that matched this descrip-
tion. Once this image was identified (see Figure 2), the first
400 images that were closest in norm were selected. We
also rotated each image 90 degrees and copied it to make
the dataset larger (size 1600) for training.

PRINCIPAL COMPONENT ANALYSIS
The application of Principal Component Analysis (PCA)

to our images was inspired in part by [3]. To begin, we have
a collection of 1600 matrices (images), each with dimension
32 × 32. We subtract the mean image from each image
to center the data, then flatten each image so that we have
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Figure 3: The first twelve orthogonal basis vectors as a result
of Principal Component Analysis.

Figure 4: The original image (left) compared to the image
recreated with 15 principal components (right).

a single matrix 𝑋 of dimension 1600 × (32 · 32), where
each row is a flattened image. We then apply SVD, which
gives us 𝑋 = 𝑈Σ𝑉⊤, where 𝑈 and 𝑉⊤ are orthogonal, and
Σ is a rectangular diagonal matrix of singular values. The
principal components (basis images) are the columns of 𝑉 .
These basis images describe the variation of 𝑋 , and can be
thought of as “building blocks” for our data.

Since SVD organizes our basis images in such a way that
the most important of these come first, we can reform our
data using a much smaller number of basis elements. Since
𝑉 is orthogonal, we can write 𝑋𝑉 = 𝑈Σ = 𝐶, where 𝐶 is a
collection of coefficients 𝑐. Each 𝑐𝑖 is the coefficient of the
projection of row 𝑥 of 𝑋 onto span{𝑣1, . . . , 𝑣𝑘} for columns
𝑣𝑖 of 𝑉 .

NEURAL NETWORK RESULTS
This project originally utilized 15 principal components

to train the neural network, effectively reducing the size
of its target output from 984 to 15. The trained network
predicts the coefficients 𝑐 corresponding to the input vector
of control parameters, which can then be used to recover
the desired YAG image. When comparing the results of the
neural network with the images recreated from PCA, the
images are nearly identical, as illustrated in Figure 4.

We have seen experimentally that basic neural networks
that are made up of dense, fully-connected layers (called
multilayer perceptrons) can be accurately trained using only
the PCA coefficients from a matrix of flattened images. More
specifically, our neural network inputs a vector in R9, and

Figure 5: Predicted images compared to the original images
recreated by PCA.

outputs a vector in R15, which can be reformed into an image
by multiplying it to the first 15 columns of 𝑉 , and reshaping
it into a 32 × 32 image.

Creating a Neural Network is entirely dependent on the
hyperparameters used, and the general architecture of the
network itself. The number of layers, number of nodes in
each layer, amount of dropout to include between each layer,
batch size, learning rate, and loss function all play a huge roll
in the outcome of a neural network. A hyperparameter tun-
ing algorithm called Hyperband [4] was recently published
to help find the best settings for various hyperparameters
within a neural network. Hyperband uses a random search
algorithm, but instead of running an entire set of epochs per
random set of parameters, it only goes through a few epochs
before starting on a new random set of parameters. The moti-
vation behind this idea stems from the fact that you can often
tell whether or not a given setup will be useless within the
first few iterations. After going through all of the possible
combinations of hyperparameters for a few epochs, the al-
gorithm discards the hyperparameter settings it deems poor,
and goes through a few more epochs of the remaining net-
works. Hyperband continues this process until it is down to
a few combinations, and returns the best performing network
settings. Based on the network architecture returned by Hy-
perband, a network with a small number of layers and a high
number of nodes per layer yielded the best results in terms of
loss in the validation data. The results are shown in Figure 5.

NONLINEAR LEAST-SQUARES
To calibrate control parameters, we include an optimiza-

tion technique to correctly predict the true input parameters
when the measured values have been perturbed in some way.
We model the scenario as a non-linear least squares mini-
mization problem. In particular, the problem is stated as{

minimize ∥ 𝑓 (𝑥) − 𝑦∥2
2

subject to ∥𝑥 − 𝑥0∥2 ≤ 𝜀,
(1)

where 𝑓 is the surrogate model as a function of the vector
of input parameters 𝑥, and 𝑦 represents the measured output.
The problem iterates over 𝑥, starting with some perturbed
vector 𝑥0 and converging to an approximation of the true
input parameters 𝑥.
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Figure 6: The result of running 1000 least squares problems with randomly perturbed initial parameters using the Levenberg-
Marquardt algorithm. The horizontal axis represents the relative error, and the vertical axis represents frequency.

Rather than assume our initial guess of 𝑥0 will be
within some region of the true solution, we instead use
the Levenberg-Marquardt algorithm [5] to solve the least-
squares objective as an unconstrained problem. Figure 6
shows the result of running 1000 least squares problems with
randomly perturbed initial parameters using the Levenberg-
Marquardt algorithm. There is a histogram for every param-
eter. The horizontal axis is the relative error |𝑥𝑖−𝑥𝑖 |

|𝑥𝑖 | , where
𝑥𝑖 is the true 𝑖th parameter and 𝑥𝑖 is the 𝑖th parameter corre-
sponding to the solution to the least squares problem. Note
that “currFoc” and “currMat” have a maximum relative error
of just 3%, the parameters “gunE,” “lin1E,” and “lsrSzR”
have a maximum relative error of about 20%, “gunPhi” and
“lin1Phi” have maximum relative errors of about 50%, and
“lin1dx” and “lin1dy” have a maximum relative error of over
100,000% and 200,000%, respectively.

CONCLUSION
The parameters “lin1dx” and “lin1dy” (L1 misalignment)

as seen in Figure 6 are still not being accurately predicted
compared to other parameters. This is likely due to a data
augmentation technique used increase the size of the training
data. Further work is being done to improve the results of
this optimization, such as gathering more usable data to
retrain the network.

The YAG images from the accelerator itself are much
larger and have many other components. These include a

ring toward the outer edges of the image, and a large variety
in size, shape, and location of the beam. One way to combat
these changes is to crop each image uniformly, centered at
the center of mass of the beam. This will be implemented
in the near future.
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