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Abstract

Particle accelerators require continuous adjustment
to maintain beam quality. At the Advanced Photon
Source (APS) this is accomplished using a mix of operator-
controlled and automated tools. To improve the latter, we
explored the use of machine learning (ML) at the APS in-
jector complex. The core approach we chose was Bayesian
optimization (BO), which is well suited for sparse data tasks.
To enable long-term online use, we modified BO into adap-
tive Bayesian optimization (ABO) though auxiliary mod-
els of device drift, physics-informed quality and constraint
weights, time-biased data subsampling, digital twin retrain-
ing, and other approaches. ABO allowed for compensation
of changes in inputs and objectives without discarding previ-
ous data. Benchmarks showed better ABO performance in
several simulated and experimental cases. To integrate ABO
into the operational workflow, we developed a Python com-
mand line utility, pysddsoptimize, that is compatible with ex-
isting Tcl/Tk tools and the SDDS data format. This allowed
for fast implementation, debugging, and benchmarking. Our
results are an encouraging step for the wider adoption of ML
at APS.

INTRODUCTION

Modern particle accelerators face increasing performance
demands, resulting in tighter tolerances on accuracy and
stability [1]. Due to cost, physical limits, and external fac-
tors, some amount of continuous parameter adjustment is
constantly required. Historically, this tuning required expert
guidance and intuition, with software tools only allowing
for a partial automation. With the explosion of machine
learning methods in the last decade, there is immense in-
terest in making use of the newly available algorithms to
improve reliability, reduce expert workload, and provide
higher performance to the users.

A key application of ML for accelerators is in parameter
optimization, whereby one or multiple objectives are tuned
through an intelligent search of the parameter space. A num-
ber of conventional optimization methods are already in use,
including simplex[2, 3], RCDS [4], genetic algorithms [5],
extremum seeking [6], and several others. New ML meth-
ods include Bayesian optimization (BO) [7], reinforcement
learning [8], and others. BO is of special interest since it
allows efficient black-box function optimization with few
samples, taking advantage of any prior physics model knowl-
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edge provided to the algorithm. This paper first reviews the
basic BO process, and then discusses our contributions - a
set of improvements that permits for continuous, robust, and
adaptive BO use for optimizing time-varying systems.

ADAPTIVE BAYESIAN OPTIMIZATION

In standard BO process, system output is described by

y=fx) +e )

where f(x) is the black-box function of interest and ¢ ~
N (0, a%) the added noise. Vector x has dimension of nx d
where d is the parameter space size and n the number of
measurements. Using Gaussian Process (GP) a surrogate
model for f can be parameterized as a multivariate normal
distribution with a mean m(x) and covariance kernel k(x, x")
as

f(xX) ~ €P(m(x),k(x,X")) 2

The kernel is used to evaluate the similarity between values
of fat x and x’, and its” appropriate choice is critical for good
GP convergence. Existing knowledge about the system can
be encoded through prior distributions on kernel and mean,
with the distribution parameters called hyper-parameters.
During model fitting hyper-parameters are updated using
Bayes’ rule (conditioned on observed data) and posterior
probability distribution p(f | y, X) can then be sampled to get
model predictions [9]. BO evaluates a special ‘acquisition’
function over a fitted GP model so as to predict the best next
location(s) to sample. A variety of analytic and Monte-Carlo
acquisition functions exist, with one of simplest being the
upper confidence bound (UCB)

UCB(x) = u(x) + Y * 7 (x) 3)
where mean p and variance ¢ are provided by the GP
model. The parameter B allows for trade-off between explo-
ration (risk for high reward) and exploitation (use known
good configuration).

Time-varying GP Models

The above discussion grouped all input parameters into
vector X, representing for example several magnet currents.
A simple BO process would proceed by using standard
isotropic kernels, such as Matérn and radial basis func-
tion [9], and only fit freshly collected data. To improve
convergence speed, previous work has successfully used
historic data to train covariance distributions [10]. Such
pre-training works well when conditions are reproducible.
However, some accelerators also have undesired and poorly
modelled time-dependent drifts. ML methods dealing with
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dynamic systems are referred to as adaptive ML (AML).
Several examples of their use in accelerators can be found
in [1], including model-free extremum seeking and adaptive
neural networks. Our work seeks instead to use an explicitly
time-aware model as part of BO algorithm, which to our
knowledge has not yet been demonstrated for accelerators.
Formally, we extend f with explicit time dimension ¢, such
that the system is now described by

“4)

Time effects have different expected correlation patterns,
requiring careful composition of sub-kernels. Kernel multi-
plication and addition can be thought of as logical AND and
OR operations along any shared dimensions. For example,
composition of periodic and RBF kernels results in a ‘locally
periodic’ correlation - a periodic (not necessarily sinusoidal)
function that can slowly change shape:

2sin? (lt — 7'|/p —(1-1')?
ky, = a2 exp( ( B ) exp TP

y=ftx)+¢

(&)
Hyper-parameters of this kernel are output variance o, pe-
riod p, and lengthscale /. Higher-dimensional kernels can
be assembled as

k

product = kx(x’x/) x kl(tv t,)

(6)
(7

with AND/OR applying in each dimension. In experimental
applications, some intuition about the underlying drift pro-
cesses can be gained from historical data but precise values
for parameters like number of periodic signals are difficult
to specify. An example of experimental beam position data
from the APS linac is shown in Fig. 1, demonstrating long-
term linear drift as well as two distinct periodic signals. For
unknown reasons, one of the periodic signal components
sometimes disappears, demonstrating the need for not only
time-aware but also time-adaptive models.

kua’d = kx(x,x') + kt(t, [,)
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Figure 1: APS linac beam position drift and PSD showing
two distinct types of signals observed on different days.

Automatic kernel selection and deep kernel learn-
ing (DKL) are an active area of research, with several promis-
ing results [11]. In this work we chose a standard spectral
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mixture (SM) kernel as a natural adaptive extension of the
local periodicity concept [12]. SM is the basis for more com-
plex DKL approaches - it can approximate any stationary
kernel, including ones with multiple oscillatory and local
correlations, and can be easily interpreted in terms of kernel
spectral density. To account for non-stationary linear drifts,
a linear kernel can be added when necessary. For spatial
dimensions, we use a standard Matérn kernel (v = 2.5) with
automatic relevance determination enabled. Thus, our final
ABO model is given by

k(t,t',x,x") = (kgps(t, 1) + k;(t,1")) x 0%k, (x,X")  (8)

History-aware Efficient Evaluation

An important GP/BO limitation is poor performance scal-
ing with number of data points (@ (n3)) and number of di-
mensions. With exact GP methods, computation time dom-
inates past a few thousand data samples. For accelerator
applications, this limit can be quickly exceeded. To optimize
beam time usage, it is critical to generate new candidates at
a speed comparable to sampling rate. Adaptive BO is partic-
ularly challenging since it requires an observational period
of sufficiently long duration and sufficiently high sampling
rate to capture all relevant system behaviour. We explored
some of approximate and scalable GP algorithms available
in GPyTorch [13], but nonetheless eventually encountered
performance issues.

Due to the need to preserve long timescales, instead of
a simple data cutoff or random subsampling, ABO uses
novel time-biased importance bandwidth subsampling. The
core idea is to adaptively discard old data that does not con-
tribute to the overall model outside some specific time scale.
Among such candidate points, subsampling is weighted by
impact on current model fit/prediction. For example, with
ideal periodic noiseless signals, data older than a complete
period is allowed to be subsampled, and points in slowly
varying regions/dimensions as reflected by small variance
improvements will be discarded first. For fast signals, averag-
ing is also performed on the main signal part so as to reduce
noise. The exact cutoff is determined by the upper band-
width threshold required from ABO, typically 0.05Hz (20s
period). This strategy guarantees maximum possible preser-
vation of spectral and correlation information.

Constraints and Priors

The final important element of our algorithm is the use of
several tools to ensure ABO makes conservative parameter
estimates and does not exceed safety constraints (i.e. beam
losses) or operational limits (i.e., to avoid hysteresis). We
implement GP feasibility models to predict constraints [14],
and also limit slew rates and overall control bandwidth
through use of proximal hard and soft cutoffs based on
expected sampling rate and measurement delay [15]. For
acquisition functions and parameter distributions, we use
extremely conservative priors/parameters favouring exploita-
tion (i.e. low ), ensuring sampling occurs in known good
regions. These methods guarantee ABO is well behaved
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and robust, and can in worst case be quickly overridden by
standard control tools.

RESULTS

We first tested ABO on several simulated problems, rang-
ing from synthetic functions to linac particle tracking simu-
lations. Figure 2 shows an example application to a simple
case of sinusoidal corrector drift. After 30 initial points
taken without any current changes, denoted by horizontal
blue line, both methods were allowed to run with identical
settings. After approximately a single period, ABO con-
verges on the oscillation frequency and starts following the
drift without any lag, demonstrating that it is in fact predict-
ing the future location via the model. Simple BO meanwhile
sees the drift as just large noise and oscillates around cen-
tral input value, losing significant performance even after 4
periods.
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Figure 2: ABO and BO runs for sinusoidal corrector drift.

Experimental tests were done at the APS injector complex.
It consists of a linac [16] and two rings [17, 18] that bring
bunches to 7GeV. To stabilize beam parameters, several
proportional feedback controllers, called control laws [19],
are used. They operate with pre-computed inverse response
matrices based on experimental data. A recent analysis of
beam parameters noted elevated high frequency jitter levels
with control laws enabled, potentially caused by BPM noise
or deviations from expected lattice parameters. With control
laws off however, slower but larger amplitude oscillations
were observed, shown in Fig. 1. While not large enough to
impact overall injector efficiency, eliminating both the drifts
and high frequency noise is desirable for experiments in the
linac extension area. We tested ABO for that purpose by
picking a suitable BPM and corrector pair at the end of the
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linac, and using as objective the mean squared trajectory
error. Results of this test are given in Fig. 3.
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Figure 3: ABO and control law trajectory stability.

For the particular dataset shown, the linac exhibited the
‘two frequency’ mode described previously and ABO was
constrained to 3 mixture components to speed up conver-
gence. The previous 15 minutes of history were used as
the training set for each run, subsampled to 100 points to
improve BPM noise. Even with these limitations, ABO was
clearly able to remove the main oscillatory signal at 2.5 mHz,
with corresponding RMS jitter lowered to 0.23 mm as com-
pared to 0.35 mm for control law and 0.33 mm for uncon-
trolled cases. Simulations indicate that both components
can be fitted robustly with longer data collection time, but
convergence speed is strongly dependent on noise levels.

As first step towards operational use, ABO was integrated
with other optimization methods into a Python package
APSopt. Its key features include full support for SDDS file
format [20] (via PySDDS library [21]) and an SDDS-toolkit
compatible command line interface [22-24]. This allows
interchangeable BO/ABO algorithm use in place of existing
simplex and RCDS ones. We are currently testing ABO
long-term stability and robustness in a virtual environment
which replays realistic data in an automated testing loop.

CONCLUSION

Improving robustness and adaptability of ML-based op-
timizers is a crucial step in making these tools useful in
day-to-day accelerator operation. We have demonstrated
that BO can be modified with an explicitly time-dependent
adaptive SM kernel to fit a wide variety of experimentally-
relevant drifts. Results on both simulated and experimental
tasks, while not perfect, significantly improve on naive BO
performance. Future work will focus on improving GP hot-
start with pre-training on more varied historical data, and
exploring DKL neural networks for further kernel model
improvements.
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