
STUDY OF NONLINEAR DYNAMICS IN THE 4-D HÉNON MAP USING
THE SQUARE MATRIX METHOD AND ITERATIVE METHODS∗

K. Anderson†, Y. Hao, FRIB, Michigan State University, East Lansing, MI, USA
L.-H. Yu, Brookhaven National Laboratory, Upton, NY, USA

Abstract
The Hénon Map represents a linear lattice with a single

sextupole kick. This map has been extensively studied due
to it’s chaotic behavior. The case for the two-dimensional
phase space has recently been revisited using ideas from
KAM theory to create an iterative process that transforms
nonlinear perturbed trajectories into rigid rotations. The
convergence of this method relates to the resonance structure
and can be used as an indicator of the dynamic aperture.
The studies of this method have been extended to the four
dimensional phase space case which introduces coupling
between the transverse coordinates.

4-D HÉNON MAP
The following is the form of the 4-D area preserving

Hénon map:
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where R(𝜃) is a clockwise two by two rotation matrix of
angle 𝜃, and 𝜇 is 2𝜋 times the linear tune and whose subscript
denotes the dimension. The physical interpretation of this
map is a linear one-turn map of a lattice followed by a single
thin sextupole kick.

The linear matrix can be diagonalized by using the com-
plex variables 𝑧𝑥 = 𝑥 − 𝑖𝑝𝑥 and 𝑧𝑦 = 𝑦 − 𝑖𝑝𝑦 which creates
the following one turn map:

𝑧′𝑥 =
𝑒𝑖𝜇𝑥

4

(
−𝑖(𝑧∗𝑥)2−2𝑖𝑧∗𝑥𝑧𝑦+𝑖(𝑧∗𝑦)2+2𝑖𝑧∗𝑦𝑧𝑦−𝑖𝑧2

𝑥+4𝑧𝑥+𝑖𝑧2
𝑥

)
(2)

𝑧′𝑦 =
𝑒𝑖𝜇𝑦

2

(
− 𝑖𝑧∗𝑥𝑧

∗
𝑦 + 𝑖𝑧∗𝑥𝑧𝑦 + 𝑖𝑧∗𝑦𝑧𝑥 + 𝑖𝑧𝑥𝑧𝑦 + 2𝑧𝑦

)
, (3)

where the prime denotes the variable after one turn.
In this article, we are expanding a method that transforms

the trajectory within the central island to a rigid rotation in
a two-dimensional phase space to a four-dimensional phase
space.

RIGID ROTATION
Finding a diffeomorphism to a rigid rotation in the 4-D

phase space is very analogous to the 2-D derivation [1]. As
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before we are looking at bounded pseudo-periodic orbits
(𝑧 (0)𝑥,𝑦 , 𝑧

(1)
𝑥,𝑦 , · · · , 𝑧 (𝑛)𝑥,𝑦 , · · · ). KAM theory [2] showed that the

invariant tori survive under small nonlinear perturbations
and this idea is still applicable to this system so we can
expect this diffeomorphism to exist for this case. The sig-
nificant change is the motion in 𝑥 and 𝑦 are coupled so the
diffeomorphisms transforming the motion in each 𝜃 are not
uncoupled and dependent on both rigid rotation angles as
this section will show.

As before we express 𝑧𝑥,𝑦 in terms of a complex phase:
𝑧𝑥,𝑦 = 𝑒𝑖 𝜃𝑥,𝑦 . The real part of each 𝜃 represents the argu-
ments of 𝑧 while the imaginary parts relate to the logarithm
of the amplitudes of each 𝑧. We can then define 𝑓𝑥,𝑦 as the
function of the change in 𝜃 after one turn and is dependent
on 𝜃𝑥 , 𝜃

∗
𝑥 , 𝜃𝑦 , 𝜃

∗
𝑦 i.e.:

𝑧′𝑥,𝑦

𝑧𝑥,𝑦
= exp 𝑖(𝜃′𝑥,𝑦 − 𝜃𝑥,𝑦) = exp 𝑖 𝑓𝑥,𝑦 (𝜃𝑥 , 𝜃∗𝑥 , 𝜃𝑦 , 𝜃∗𝑦) . (4)

In the case that 𝑧𝑥 and 𝑧𝑦 are pseudo-periodic we expect
𝜃𝑥 and 𝜃𝑦 to be as well. We can then find diffeomorphisms
to a rigid rotation in both 𝜃𝑥 and 𝜃𝑦:

𝜃𝑥 = 𝛼 + ℎ (𝛼, 𝛽) (5)

𝜃𝑦 = 𝛽 + 𝑔 (𝛼, 𝛽) , (6)

where ℎ and 𝑔 are smooth complex functions, which are
periodic with respect to 𝛼 and 𝛽 and each have a period
of 2𝜋. Note that compared to the 2-D phase space, the
motion in ℎ and 𝑔 are coupled and dependent on two angles
instead of one. However 𝛽 and 𝛼 are still the angles of pure
rigid rotations:

𝛼𝑛+1 = 𝛼𝑛 + 𝜌𝑥 (7)

𝛽𝑛+1 = 𝛽𝑛 + 𝜌𝑦 , (8)

where 𝜌𝑥 and 𝜌𝑦 are the rotation numbers:

𝜌𝑥,𝑦 = lim
𝑛→∞

𝜃
(𝑛)
𝑥,𝑦 − 𝜃

(0)
𝑥,𝑦

𝑛
. (9)

Since ℎ and 𝑔 are periodic it is useful to express them as
their Fourier series.

ℎ =

∞∑︁
𝑚,𝑛=−∞

ℎ̂𝑛,𝑚𝑒
𝑖𝑚𝛼+𝑖𝑛𝛽 (10)

𝑔 =

∞∑︁
𝑚,𝑛=−∞

�̂�𝑛,𝑚𝑒
𝑖𝑚𝛼+𝑖𝑛𝛽 . (11)

From Eq. 4 we use an iterative method to solve for the
diffeomorphisms and the rotation numbers starting from
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the initial point (𝑧 (0)𝑥 = 𝑥𝑜 − 𝑖𝑝𝑥𝑜, 𝑧 (0)𝑦 = 𝑦𝑜 − 𝑖𝑝𝑦𝑜). By
combining Eq. (4) with Eqs. (5) and (6) we can see how ℎ

and 𝑔 change between turns. The difference between ℎ and
𝑔 from one turn to the next is 𝑓𝑥 and 𝑓𝑦 minus the rotation
number 𝜌𝑥 and 𝜌𝑦 respectively.

We will define 𝑓𝑥 and 𝑓𝑦 minus their respective
rotation numbers as 𝜂𝑥 (𝜌𝑥 , 𝛼, 𝛽, ℎ(𝛼, 𝛽), 𝑔(𝛼, 𝛽)) and
𝜂𝑦 (𝜌𝑥 , 𝛼, 𝛽, ℎ(𝛼, 𝛽), 𝑔(𝛼, 𝛽)).

So for each iteration we solve:

ℎ (𝑛+1) (𝛼 + 𝜌
(𝑛+1)
𝑥 , 𝛽 + 𝜌

(𝑛+1)
𝑦 ) − ℎ (𝑛+1) (𝛼, 𝛽) =

𝜂𝑥 (𝜌 (𝑛+1)
𝑥 , 𝛼, 𝛽, ℎ (𝑛) (𝛼, 𝛽), 𝑔 (𝑛) (𝛼, 𝛽)) (12)

𝑔 (𝑛+1) (𝛼 + 𝜌
(𝑛+1)
𝑥 , 𝛽 + 𝜌

(𝑛+1)
𝑦 ) − 𝑔 (𝑛+1) (𝛼, 𝛽) =

𝜂𝑦 (𝜌 (𝑛+1)
𝑦 , 𝛼, 𝛽, ℎ (𝑛) (𝛼, 𝛽), 𝑔 (𝑛) (𝛼, 𝛽)) , (13)

where the (𝑛) in the superscript denotes iteration number,
not turn number. To solve these we use the initial conditions
ℎ (0) = 𝜃𝑥𝑜 − 𝛼0 and 𝑔 (0) = 𝜃𝑦𝑜 − 𝛽0. As with the 2-D
case, the zeroth order Fourier components of the left hand
side go to zero which gives us the constraint for the rotation
numbers. The higher order coefficients will have the form

𝑑 (𝑛+1) (𝛼, 𝛽) =
𝜂
(𝑛)
𝑗 ,𝑛𝑚

𝑒𝑖𝑚𝜌
(𝑛+1)
𝑥 +𝑖𝑛𝜌 (𝑛+1)

𝑦 − 1
, (14)

where 𝑑 is ℎ or 𝑔 and then 𝑗 will be 𝑥 or 𝑦 respectively. Now,
the condition condition is visible: The exponential in the
denominator cannot equal unity or else that component will
go to infinity, and the method will fail to find a solution.
These conditions tend to be easier to avoid than in the 2-D
case as it requires both rotation numbers to be not ideal.

Lastly, the zeroth order component of ℎ and 𝑔 (ℎ̂0,0 and
�̂�0,0) need to be found. This is done by constraining the
diffeomorphism to pass through the initial angles. So for
existing 𝛼∗ and 𝛽∗ we’ll have:

𝜃𝑥𝑜 = 𝛼∗ + ℎ (𝑛+1) (𝛼∗, 𝛽∗) (15)

𝜃𝑦𝑜 = 𝛽∗ + 𝑔 (𝑛+1) (𝛼∗, 𝛽∗) . (16)

This process will give the rotation numbers and motion of
particles in the 4-D phase space.

RESULTS
As we push for larger amplitudes and get closer to the

separatrix the method will begin to fail due to 𝜂𝑥 and 𝜂𝑦
not being smooth enough. In order to remedy this we again
utilize the square matrix method (SMM) [3]. Using this
method gives us a transformed phase space described by the
new complex variables 𝑤𝑥 and 𝑤𝑦 whose motion compared
to 𝑧𝑥 and 𝑧𝑦 will be closer to a pure rotation and therefore
have a more constant amplitude. By truncating the method
at some order 𝑁 and performing a Jordan decomposition on
the square matrix to get the generalized eigenvectors we get

(a)

(b)

(c)

Figure 1: Averaged inverse error for the first 1000 turns
using just the 3rd order (a) and 7th order (b) square matrix
method and adding Newton’s method (c).

the transformations 𝑈𝑥 and 𝑈𝑦 which describe 𝑤𝑥 and 𝑤𝑦

in terms of 𝑧𝑥 and 𝑧𝑦

𝑤𝑥,𝑦 = 𝑈𝑥,𝑦 (𝑧𝑥 , 𝑧𝑦 , 𝑧∗𝑥 , 𝑧∗𝑦 , 𝑧2
𝑥 , 𝑧

2
𝑦 , 𝑧𝑥𝑧𝑦 , . . .) (17)

To return to the original phase space we also need the
inverse maps 𝑈−1

𝑥 and 𝑈−1
𝑦 which are functions of poly-

nomials of 𝑤𝑥 and 𝑤𝑦 . These inverses are approximate
and accurate up to the calculated order, i.e. 𝑈−1

𝑥,𝑦 ◦𝑈𝑥,𝑦 =

𝐼 + O
(
𝑧𝑁+1
𝑥 , 𝑧𝑁+1

𝑦

)
. To ensure a more accurate inverse in

our calculations we perform up to 10 iterations of Newton’s
method to find 𝑧𝑥 and 𝑧𝑦 from a given 𝑤𝑥 and 𝑤𝑦 . The
plot (a) and (b) in Fig. 1 show that the inverse of square
matrix transformation 𝑈𝑥/𝑦 can only be determined within
an aperture, while the accuracy decreases as the amplitude
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(a) (b)

(c) (d)

Figure 2: The iteration map for the 4-D transformed Hénon map with linear tunes 𝜈𝑥 = 0.282 and 𝜈𝑦 = 0.6153, using
256 sample points, and 𝑤 as the variable from the 3rd order (a) and 7th order (b) SMM. The color bar is the minimum
difference of 𝛿𝜃𝑥,𝑦 between iterations. (c) is the frequency map, the color bar is the natural log of the sum of the squares of
the difference in tunes between the first and second halves of each orbit calculated from NAFF.

increases. However, the Newtons’ method indeed gives us a
more accurate inverse even as we get farther from the origin,
as illustrated in Fig. 1 (c). By doing this the inverse only
begins to fail near the edge of the aperture. As we will show
later, this region is larger than the area of convergence of
the iteration method. So we know that the convergence of
the iteration method in Fig. 2 is not limited by the accuracy
of our inverse function. The same process described in the
last section is carried out but with 𝑤𝑥 and 𝑤𝑦 and their con-
jugates as our variables for the map. So now 𝑤𝑥,𝑦 = 𝑒𝑖 𝜃𝑥,𝑦

and we can proceed with the method as before.
Figure 2 summarize the dynamic apertures of the 4-D

Hénon map with linear tunes 𝜈𝑥 = 0.282 and 𝜈𝑦 = 0.6153,
predicted by various methods in the sub-figures. These linear
tunes are close to a third order sum resonance 𝜈𝑦 = 1 −
2𝜈𝑥 . To evaluate the method proposed in this paper, we can
compare it to a frequency map generated with the NAFF
algorithm [4], shown in Fig. 2 (a). Comparing with (a), the
2 (b) uses the iteration method directly on the original 4-D
Hénon map and only yield a much smaller aperture. Looking
at Fig. 2 (b) versus (c) and (d) show that using the SMM
extends the area of convergence for our method.

Shown in Fig. 2 (d) is the results of the iterative method
being used on the 4-D Hénon map using a 7th order SMM.
The indicator used for the colors is the minimum difference
of 𝛿𝜃𝑥,𝑦 between iterations. If this value is small it suggests

that our method is converging on some rotation numbers
and orbit. One can see similar features, such as resonance
structures, in the iterative map and the frequency map.

One will also notice that the iterative approximation of
the dynamic aperture is smaller than ones generated from
frequency maps and tracking. We can further extend the
range of the aperture from our iteration method by reducing
the order of the map used in the SMM to the 3rd order. This
is still high enough to resolve the third order resonance but
with a lower order there are less terms in the Fourier series
of ℎ and 𝑔. It is then less likely that one of their coefficients
will blow up due to a small denominator from the iteration
tunes being close to some resonance. Fig. 2 (c) which uses
the 3rd order SMM shows this larger area compared to Fig. 2
(d) which uses the 7th order SMM.

CONCLUSION
We expanded the iteration method used in revisiting the

2-D Hénon Map to be effectively used in the 4-D Hénon Map.
The square matrix method plays a critical role in using this
iteration method near resonances and expands the area of
convergence. Future studies need to be conducted to further
push the area of convergence of the iterative method so it
can be used as an indicator of the dynamic aperture of a
system and so this method can be used in a 6-D phase space.
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