<u>CLIQ:</u>

a New Quench Protection Technology for Superconducting Accelerator Magnets

- E. Ravaioli (LBNL)
- 12 October 2016

1878 Here and a first and a first of a first marked and a second of a second of the second and a second of the first of th

attallent to the providence is an an and a standard and a standard and a standard and a standard and a standard

<u>CLIQ – Coupling-Loss Induced Quench system</u>

- Magnet quench protection
- CLIQ technology
- CLIQ heating mechanism

Implementation on existing accelerator magnets

Implementation on future accelerator magnets

Outlook

12 October 2016

 $J \approx kA/cm^2$

High Magnetic Field

 $J \approx kA/cm^2$

High Magnetic Field

 $J \approx kA/cm^2$

High Magnetic Field

 $J \approx kA/cm^2$

High Magnetic Field

High Current Density

 $J \approx kA/cm^2$

High Magnetic Field

B = 5-20 T

High Energy Density $e = B2/(2 \mu 0) \approx 10-40 MJ/m3$

High Current Density

 $J \approx kA/cm^2$

High Magnetic Field

B = 5-20 T

High Energy Density

 $e = B2/(2 \mu 0) \approx 10-40 MJ/m3$

Quench

If of a point of conductor suddenly becomes non-superconducting, it starts heating up

High Current Density

 $J \approx kA/cm^2$

High Magnetic Field

B = 5-20 T

High Energy Density

 $e = B2/(2 \mu 0) \approx 10-40 MJ/m3$

Quench

If of a point of conductor suddenly becomes non-superconducting, it starts heating up

High Current Density

 $J \approx kA/cm^2$

High Magnetic Field

B = 5-20 T

High Energy Density

 $e = B2/(2 \mu 0) \approx 10-40 MJ/m3$

Quench

If of a point of conductor suddenly becomes non-superconducting, it starts heating up

High Current Density

J ≈ kA/cm²

High Magnetic Field

B = 5-20 T

High Energy Density

 $e = B2/(2 \mu 0) \approx 10-40 MJ/m3$

Quench

If of a point of conductor suddenly becomes non-superconducting, it starts heating up

The **energy stored** in the magnet is usually sufficient to melt kilos of copper and **damage** the magnet!

High Current Density

J ≈ kA/cm²

High Magnetic Field

B = 5-20 T

High Energy Density

 $e = B2/(2 \mu 0) \approx 10-40 MJ/m3$

Quench

If of a point of conductor suddenly becomes non-superconducting, it starts heating up

The **energy stored** in the magnet is usually sufficient to melt kilos of copper and **damage** the magnet!

High Current Density $1 \approx k \Lambda / cm^2$

 $J \approx kA/cm^2$

High Magnetic Field

B = 5-20 T

High Energy Density e = $B2/(2 \mu 0) \approx 10-40 MJ/m3$

Quench

If of a point of conductor suddenly becomes non-superconducting, it starts heating up

The **energy stored** in the magnet is usually sufficient to melt kilos of copper and **damage** the magnet!

Quick propagation

of the resistive zone is needed

High Current Density $J \approx kA/cm^2$

High Magnetic Field

B = 5-20 T

High Energy Density e = $B2/(2 \mu 0) \approx 10-40 \text{ MJ/m3}$

Quench

If of a point of conductor suddenly becomes non-superconducting, it starts heating up

The **energy stored** in the magnet is usually sufficient to melt kilos of copper and **damage** the magnet!

Quick propagation

of the resistive zone is needed

Homogeneous distribution of the quench energy

High Current Density $J \approx kA/cm^2$

High Magnetic Field

B = 5-20 T

High Energy Density e = $B2/(2 \mu 0) \approx 10-40 \text{ MJ/m3}$

Quench

If of a point of conductor suddenly becomes non-superconducting, it starts heating up

The **energy stored** in the magnet is usually sufficient to melt kilos of copper and **damage** the magnet!

Quick propagation

of the resistive zone is needed

Homogeneous distribution of the quench energy **Discharge** of the magnet current with coil resistance

Quench heaters

are µm-thin strips glued to the coil, which heat the turns by thermal diffusion

<u>Example</u>: HL-LHC 12 T Nb₃Sn quadrupole model magnet (MQXFS1, 1.2 m)

Traditional approach: Quench heaters

LARP

repair

LARP

 Redundancy of the system Lower expected failure rate

- Easier to implement and
- More robust electrical design

homogeneous quench

More effective energy

deposition

initiation

Faster and more

 Integration in the magnet circuit to be studied

 Internal voltage distribution to be carefully analyzed

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

"Fast" loss: Characteristic time constant in the order of ms or tens of ms

B

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

B

"Fast" loss: Characteristic time constant in the order of ms or tens of ms

B

"Fast" loss: Characteristic time constant in the order of ms or tens of ms

R

"Fast" loss: Characteristic time constant in the order of ms or tens of ms

R

"Fast" loss: Characteristic time constant in the order of ms or tens of ms

R

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

R

"Fast" loss: Characteristic time constant in the order of ms or tens of ms

R

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

R

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

R

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

R

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

R

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

R

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

R

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

R

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

B

"Fast" loss: Characteristic time constant in the order of **ms** or **tens of ms**

B

"Fast" loss: Characteristic time constant in the order of ms or tens of ms

The **oscillating current** introduced by CLIQ rapidly change the **local magnetic field**

0 x [mm]

25

50

75

100

125

-50

-25

25

50

75

100

125

 $^{-125}_{-125}$

-100 -75

-50

-25

-12

-125

-100

At high current

- Low energy needed to start the quench
- High energy density, needs to be quick!
- \rightarrow **<u>POWER</u>** density is the key parameter
- (Number of CLIQ units)^2
- (Charging voltage)^2
- (magnetic length)^-2 (fixed by design)

At high current

- Low energy needed to start the quench
- High energy density, needs to be quick!
- \rightarrow **<u>POWER</u>** density is the key parameter
- (Number of CLIQ units)^2
- (Charging voltage)^2
- (magnetic length)^-2 (fixed by design)

At high current

- Low energy needed to start the quench
- High energy density, needs to be quick!
- \rightarrow **<u>POWER</u>** density is the key parameter
- (Number of CLIQ units)^2
- (Charging voltage)^2
- (magnetic length)^-2 (fixed by design)

CLIQ – Coupling-Loss Induced Quench system

Implementation on existing accelerator magnets

LHC main dipole magnet (*full-scale*)

Implementation on future accelerator magnets

Outlook

LHC main dipole magnet Twin aperture magnet Magnetic Length 14.3 m Self-inductance 100 mH Nominal current 11.8 kA Peak magnetic field 8.3 T Superconductor Nb-Ti

> 2 CLIQ Units U0=500 V C=80 mF

CLIQ technology achieved a significant **reduction** of the **hot-spot temperature**

Implementation on existing accelerator magnets

LHC main dipole magnet (*full-scale*)

LHC matching quadrupole magnet (full-scale)

Implementation on future accelerator magnets

Outlook

Implementation on existing accelerator magnets

Implementation on future accelerator magnets

High-Lumi LHC inner triplet quadrupoles

Outlook

All simulations performed with the software LEDET

Due to CLIQ's **faster** quench initiation, **lower hot-spot temperature** and **more homogeneous** temperature distribution

CLIQ integrated in the MQXF circuit

Implementation on existing accelerator magnets

Implementation on future accelerator magnets

High-Lumi LHC inner triplet quadrupoles

FCC 16 T block-coil magnet

Outlook

CLIQ: a New Quench Protection Technology for Superconducting Accelerator Magnets – E. Ravaioli

CLIQ: a New Quench Protection Technology for Superconducting Accelerator Magnets – E. Ravaioli

Implementation on existing accelerator magnets

Implementation on future accelerator magnets

High-Lumi LHC inner triplet quadrupoles

FCC 16 T block-coil magnet

FCC 20 T block-coil magnet with HTS insert

Outlook

CLIQ on 20 T LTS/HTS block-coil magnet

CLIQ on 20 T LTS/HTS block-coil magnet

CLIQ: a New Quench Protection Technology for Superconducting Accelerator Magnets - E. Ravaioli

LTS+HTS protection with CLIQ: HTS insert is safely discharged by the resistance developed in the LTS outsert connected in series

Implementation on existing accelerator magnets

Implementation on future accelerator magnets

CLIQ: Faster and more effective energy deposition mechanism

CLIQ: Faster and more effective energy deposition mechanism

CLIQ: More robust electrical design

CLIQ: Faster and more effective energy deposition mechanism

CLIQ: More robust electrical design

Tested on **full-size** accelerator dipole & quadrupole magnets

CLIQ: More robust electrical design

Tested on **full-size** accelerator dipole & quadrupole magnets

In the baseline for the **protection** of **HL-LHC** Nb₃Sn inner triplets

Outlook

CLIQ: Faster and more effective energy deposition mechanism

CLIQ: More robust electrical design

Tested on full-size accelerator dipole & quadrupole magnets

In the baseline for the **protection** of **HL-LHC** Nb₃Sn inner triplets

Protection of future magnets (Future Circular Collider, HTS)

CLIQ: Faster and more effective energy deposition mechanism

CLIQ: More robust electrical design

Tested on **full-size** accelerator dipole & quadrupole magnets

In the baseline for the **protection** of **HL-LHC** Nb₃Sn inner triplets

Protection of future magnets (Future Circular Collider, HTS)

Will CLIQ technology influence the **design** of future accelerator magnets? (less Cu, **more compact**)

QUESTIONS?

<u>ERavaioli@lbl.gov</u>

1878 At Marthard Marthard Lange Marshard and a fried a marthard war an another an another the more properly all a segurite at an

E. Ravaioli, "CLIQ", PhD thesis, 2015 http://doc.utwente.nl/96069/