

Nb₃Sn SRF Coatings at Fermilab

Sam Posen

Collaborators: Saravan Chandrasekaran, Daniel Hall, Matthias Liepe, Margherita Merio, Alexander Romanenko, Yulia Trenikhina North American Particle Accelerator Conference 2016

1. Motivation: Nb₃Sn SRF Cavities versus Traditional Niobium

🛟 Fermilab

Fabrication, Results, Properties, and Prospects," submitted to SuST, Focus on Superconducting RF for Accelerators

6 10/12/16 Sam Posen | Nb3Sn SRF Coatings at Fermilab

Maximum Accelerating Field

- For high gradient applications, the superheating field of Nb₃Sn is predicted to be twice that of niobium, potentially providing twice as large acceleration per unit length
- This is significantly beyond current performance levels
- R&D to avoid microstructural inhomogeneities may improve maximum fields

🛠 Fermilab

2. Fermilab Nb₃Sn Cavity Coating Infrastructure

Fermilab Nb₃Sn SRF Program

- Goals of program:
 - Increase maximum E_{acc}
 - Push to even higher Q_0
 - Scale up from R&D-style cavities to production-style cavities
- Funded by 2016 DOE Early Career Award

Coating Mechanism: Vapor Diffusion

Technique development: Saur and Wurm, Die Naturwissenchaften 1962, Hillenbrand et al. IEEE Transactions on Magnetics 1977, Peiniger et al, SRF'88.

13 10/12/16 Sam Posen | Nb3Sn SRF Coatings at Fermilab

Fermilab Nb₃Sn Coating Apparatus

‡ Fermilab

Fermilab Nb₃Sn Coating Apparatus

Nb Coating Chamber (protects furnace from Sn)

Chamber Protrudes Beyond Heat Shields

Installation of New Door

Installation of New Door

Single Cell Coating Setup

Outlook for Nb₃Sn Coatings at Fermilab

- Continued commissioning over next weeks: thermocouple calibration, tin heater power, installation of long-reach positioning forklift, slow pumpdown system, operational readiness clearance
- Coating of first samples, microscopic analysis, measure T_c and critical fields
- In early cavities, aim for performance equal to state of the art

3. Analysis of Microstructure of Nb₃Sn Coatings

Nb₃Sn Microscopic Analysis

- While building up infrastructure, have been performing microscopic studies on Nb₃Sn-coated samples from Cornell
- Goals:
 - Understand root cause of poor performance in cavity coated at Cornell in 2013 to prevent similar problems in future coatings
 - Improved understanding of growth of Nb₃Sn grains during coating process
- Fermilab microscopy by Yulia Trenikhina:

Coupons from Poorly Performing Cavity

- Poorly performing cavity coated in 2013
- In collaboration with Cornell, both labs retested it and cut out coupons from regions that showed high R_s and low R_s (hot spots and cold spots)

Thin Coatings in High Dissipation Hot Spots

 Regions with highest dissipation show very thin coatings, not thick enough to fully screen RF currents from Nb and intermediate Nb-Sn phases below Nb₃Sn layer

Thin Regions are Unusually Large Grains

 EBSD analysis of grain orientation reveals that the thin regions in the hot spots are in fact large grains, with diameter ~100 microns vs ~1 micron for standard Nb₃Sn grains

Thin Regions are Unusually Large Grains

 EBSD analysis of grain orientation reveals that the thin regions in the hot spots are in fact large grains, with diameter ~100 microns vs ~1 micron for standard Nb₃Sn grains

 This is consistent with mechanism for growth of grains: diffusion of tin to interface via grain boundaries

Nb3Sn-Coated Large Grain Nb Sample From Cornell

Note: nucleation step skipped during coating

Nb grains visible under the Nb₃Sn coating

EDS Nb3Sn coating on large grains Nb

- EBSD shows similar grain orientations in thin regions
- Possible indications of influence from niobium substrate on Nb₃Sn grain structure further study needed

Slide courtesy Uttar Pudasaini and Grigory Eremeev, see also Uttar's talk: WEB1CO02 Patchy Areas in Nb₃Sn Coated Samples

• Large grains with less pronounced GB.

Jefferson Lab

M2 : coated at Cornell, courtesy of Matthias Liepe and Daniel Hall.

Slide courtesy Uttar Pudasaini and Grigory Eremeev, see also Uttar's talk: WEB1CO02 Topography and Cross-section of Patchy Area

EBSD analysis of patchy area cross-section is in progress.

Microscopic Analysis Outlook

- Thin, large grains appear in coatings both at Cornell and Jefferson Lab – regions are so thin that RF may penetrate through
- Understanding how to avoid forming these regions will be especially important as we look to larger production-style cavities with less uniform conditions, more substrates
- New Fermilab collaboration with David Seidman, Professor of Materials Science and Engineering at Northwestern University
- Continued collaboration with Nb₃Sn SRF researchers at Cornell (including participation in new Center for Bright Beams) and Jefferson Lab
- Looking forward to analyzing first coatings made at Fermilab soon!