

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Suppression of Half-Integer Resonance in FNAL Booster and Space Charge Losses at Injection

Alexander Valishev, Yuri Alexahin, Valeri Lebedev October 12, 2016 NA-PAC 2016, Chicago

Credits and Acknowledgments

- J.Amundson, C.Ankenbrandt, W.Chou, A.Drozhdin, M.Fitterer, X.Huang, V.Kapin, N.Kazarinov, J.Lackey, J.MacLachlan, E.Malamud, E.McCrory, L.Michelotti, F.Mills, D.Moehs, K.Y.Ng, S.Ohnuma, F.Ostiguy, M.Popovic, E.Prebys, V.Shiltsev, P.Spentzouris, C.Y.Tan, R.Tomlin, Xi.Yang, R.Zwaska
- F.Schmidt, D.Shatilov

Selected References

- <u>http://www-bd.fnal.gov/pdriver/booster/</u>
- <u>http://frs.home.cern.ch/frs/Source/space_charge/</u>
- F.J.Sacherer, Ph.D Thesis, University of. California, Berkeley, UCRL-18454 (1968)
- A.Fedotov, I.Hofmann, "Half-integer resonance crossing in high-intensity rings", PRSTAB 5, 024202 (2002)
- E.Prebys et al., "Increasing the intensity of the Fermilab Booster", PAC'03
- W.Chou et al., "Fermilab Booster Modeling and Space Charge Study", PAC'03, DOE Review
- S.Cousineau et al., "Resonant beam behavior studies in the Proton Storage Ring", PRSTAB 6, 074202 (2003)
- J.Amundson P.Spentzouris, "Space Charge Experiments And Simulation In The Fermilab Booster", PAC'05
- Y.Alexahin et al., "Effects of Space Charge and Magnet Nonlinearities on Beam Dynamics in the Fermilab Booster", PAC'07
- S.Bernal et al., "RMS envelope matching of electron beams from "zero" current to extreme space charge in a fixed lattice of short magnets", PRSTAB 9, 064202 (2006)
- X.Huang et al., "Emittance measurement and modeling for the Fermilab Booster", PRSTAB 9, 014202 (2006)
- M.Fitterer et al., "Systematic studies on the effect of linear lattice optics for space-charge limited beams", PRSTAB (2015)

Fermilab Accelerator Complex

PIP-II Performance Goals

Performance Parameter	PIP	PIP-II	
Linac Beam Energy	400	800	MeV
Linac Beam Current	25	2	mA
Linac Beam Pulse Length	0.03	0.6	msec
Linac Pulse Repetition Rate	15	20	Hz
Linac Beam Power to Booster	4	18	kW
Booster Protons per Pulse	4.3×10 ¹²	6.5×10 ¹²	
Booster Pulse Repetition Rate	15	20	Hz
Booster Beam Power @ 8 GeV	80	160	kW
Beam Power to 8 GeV Program (max; MI @ 120 MeV)	32	80	kW
Main Injector Protons per Pulse	4.9×10 ¹³	7.6×10 ¹³	
Main Injector Cycle Time @ 60-120 GeV	1.33*	0.7-1.2	sec
LBNF Beam Power @ 60-120 GeV	0.7*	1.0-1.2	MW
LBNF Upgrade Potential @ 60-120 GeV	NA	>2	MW

*NOvA operations at 120 GeV

Booster Bottleneck: Emittance, Losses

6

Limiting Factors

- Coherent instabilities at injection (A.Macridin, Booster workshop, 2015)
- Transition crossing (V.Lebedev, Booster workshop, 2015)
- Beam emittance growth and losses at injection due to incoherent space charge effect – this talk
 - Action of direct space charge on stability of particle motion is through the time modulation of nonlinear transverse field and consequently, betatron and synchrobetatron resonances
 - Goals
 - Understand the current limitations
 - Make projections for PIP-II and make improvements in current operation

Booster Lattice

- 24 lattice periods
- Each lattice period has 4 combined function magnets
- Lattice symmetry is perturbed by DC extraction dogleg
- Betatron tunes Qx≈6.7, Qy≈6.8
- Aperture at injection $Ax \approx 5\sigma$, $Ay \approx 4\sigma$

Booster Lattice

9

Nominal Booster Injection Parameters

Injection Energy	400 MeV (β=0.713, γ=1.426)
U _{RF}	0→0.7 MV adiabatic capture
Q _s	0.08 (ω _s =35 kHz)
Bucket size	4.2×10^{-3}
Momentum spread	2.1×10^{-3} (σ_z =1.26 m) – fully bunched beam
Transverse emittance	10÷15 mm×mrad (95% normalized)
N _p	0.42×10 ¹³ in 84 bunches
Bunching factor	2.5
SC tuneshift	$\Delta Q_x = -0.2, \Delta Q_y = -0.27$
Betatron tunes	Q _x ≈6.7, Q _y ≈6.8
Chromaticity	C _x =-20, C _y =-14

Booster Parameters for "PIP-II mode"

Energy	400 MeV (β=0.713, γ=1.426)
U _{RF}	0→0.7 MV
Q _s	0.08 (ω _s =35 kHz)
Bucket size	4.2×10^{-3}
Energy spread	2.1×10 ⁻³ (σ_z =1.26 m) – fully bunched beam
Transverse emittance	10÷15 mm×mrad (95% normalized)
N _p	0.65×10 ¹³ in 84 bunches
Bunching factor	2.5
SC tuneshift	$\Delta Q_x = -0.33, \Delta Q_y = -0.46$
Betatron tunes	Q _x ≈6.70, Q _y ≈6.80
Chromaticity	C _x =-20, C _y =-14

FMA Footprint for Np=0.45 \times 10^{13}

10/12/16

Approach to Modeling

- Numerical simulations of macro-particle bunch dynamics is done with simplifying approximations (MAD-X with adaptive space charge):
 - a) No full self-consistency: Gaussian beam profile assumed.
 - b) Particles tracked through many (>100 per betatron period) thin space charge kicks per turn instead of smooth action.
 - c) Beam emittances evaluated once per turn and entered to change the properties of space charge elements.
 - d) Transverse kick modulated by longitudinal position (nonsymplectic integration).
- This approach offers quick turnaround time with decent physics
 - To be followed by true self consistent modeling.

Lattices Used in Simulation

- a) 24-cell ideal fully symetrical FODO (V.Kapin)
- b) 24-cell with induced beta-beat, no coupling
- c) Actual LOCO-restored (C.Y.Tan)

Simulation Results for Current Optics

Horizontal Emittance (mm mrad)

Beta-beat in Current Optics

with SC at Np= 0.65×10^{13}

16 A.Valishev - NA-PAC 16 - FNAL Booster

10/12/16

Simulation Results for Corrected Optics

Method of Half-Integer Stop Band Correction

Basic idea

 Close to the resonance 2Q=n (n=13 in Booster) the tune depends on RDT as

$$(Q - n/2)^{2} = (Q^{(0)} - n/2)^{2} - |g_{-n}|^{2} \implies Q \approx Q^{(0)} - \frac{|g_{-n}|^{2}}{2Q^{(0)} - n}$$
$$g_{-n} = g_{-n}^{(lattice)} + g_{-n}^{(corrector)}$$

. ว

🛠 Fermilab

10/12/16

- the tune reaches extremum (max if Q > n/2, min if Q < n/2) when g=0 Recipe
 - Introduce harmonic quadrupole (n=13) modulation

$$I_{QS_k} = I_{QS_k}^{(0)} + I^{(1)} \cos 2\pi n \frac{k}{N_{QS}} + I^{(2)} \sin 2\pi n \frac{k}{N_{QS}}, \quad k = 1, ..., N_{QS}$$

- With small intensity beam, measure tunes with different settings for I⁽¹⁾ and I⁽²⁾
- Interpolate $Q(I^{(1)}, I^{(2)})$ and find extremum

Model of Half-Integer Stop Band Correction

LOCO fitted optics original stop bands are

Qy sin COS 6.61 6.60 6.59 6.58 6.57 -0.15 -0.10-0.05 0.00 0.05 0.10 0.15 -0.20 δK1 QL Qx sin cos 6.60 6.58 6.56 6.54 -0.10 -0.05 0.05 0.10 δk1 QS

Tunes near half-integer vs. amplitude of sine and cosine modulation of QS and QL (13th harmonic). Calibration:

Resonance correction (first Qy then Qx): $\delta K1_QL(1)=-0.052, \delta K1_QL(2)=0.008 \Rightarrow \delta I_QL=1.6 A$ $\delta K1_QS(1)=0.006, \delta K1_QS(2)=-0.033 \Rightarrow \delta I_QS=1.0 A$ After correction:

ion: $\Delta Q_x^{(0)} \approx 0.003, \quad \Delta Q_y^{(0)} \approx 0.008$

Summary

- With known limitations, the adaptive space charge method allows for very fast evaluation of options
 - PIC simulations to follow
- The half-integer resonance is a performance limiting factor
 - At intensity of 4×10^{12} simulation results are consistent with observations
 - At Np= 6.5×10^{12} emittance growth and losses are prohibitively high
 - 6.5 × 10¹² is allowed in the ideal 24-fold symmetry lattice
 - Beta-beat correction to better than 5% may be necessary
- A method of stop-band measurement and correction was evaluated in modeling
 - Strategy for experimental studies was developed

