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Enhanced Self-Seeding (ESS)
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Fresh slice lasing at LCLS: modes of operation
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ESS proof of principle experiment
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ESS proof of principle experiment
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ESS proof of principle: statistical properties
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ESS proof of principle: comparison with SASE
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~12* increase in X-ray beam brightness compared to SASE




ESS proof of principle: comparison with self-seeding
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ESS generates ~4* shorter pulses with higher peak power
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ESS proof of principle: comparison with self-seeding
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Single bunch harmonic ESS: simulation study
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Double bunch harmonic

—S5S: simulation study
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Conclusion

» We discuss Enhanced Self-Seeding (ESS) as a method to increase the
brightness and enhance the capability of X-ray FELSs.

* \We report the results of the first experimental demonstration of ESS at LCLS.

* We measure ESS pulses with high peak power (~ 59 GW) short pulse
duration (sub 10 fs) and narrow bandwidth (~ 8*10 ).

* We perform a comparison of ESS performance with SASE and self-seeding
at the same photon energy and estimate an increase in brightness of a
factor of 12 and 2 respectively.

e Application of this method to optimized undulator designs promises peak
powers in the TW range sufticient for X-ray imaging and nonlinear science
applications.

e Further exploration of this method including its application to harmonic
lasing is currently under studly.
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Orbit correction: setting waist position at HX
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Fresh slice SASE: pulse duration control
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% The dechirper is set to an offset off machine axis " s ! . . L L -

** The electron beam gets a
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Start-to-end simulations-1
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Start-to-end simulations-2
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Possible bandwidth broadening from nonlinear chirp
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See A. Marinelli et. al., Comparative study of nonideal beam effects in high gain harmonic generation and self-seeded free electron lasers



Double-bunch monochromator design

C* (220) at 12 keV
0=24.18°

e Schematics

* Time delay ~ 1 to 10 ns feasible w/ h >330 mm
At = 2h(1+cosa)/sina
o = 2(m/2-6)
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