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– Since TMCI describes the merger of two low-order modes, the Fokker-Planck analysis 
makes a relatively small effect on the predicted instability threshold when ξ = 0
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This is an eigenvalue problem: truncating and numerically solving it gives normal modes 
that are linear superpositions of the          , each with a complex frequency Ω.

If Ω has a positive imaginary part then the system is unstable
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Physical picture of Fokker-Planck dissipation
 In the transverse plane we assumed simple dipole motion and obtained damping 

at the transverse damping rate
 In the longitudinal plane the effective damping depends on the mode number
 The diffusion time tdiff for a perturbation with characteristic scale length Δpz is

 Diffusion also results in additional coupling between modes, but this is weak 
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Higher order modes are 
more strongly damped
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Mode coupling at zero chromaticity is very similar 
to that of Vlasov theory

ξ = 0

Approximate 
merger of modes

m = 0

m = -1

In Vlasov picture the matrices 
are purely real at zero 

chromaticity, and two distinct 
real eigenvalues collide to 

become complex conjugates 
of each other
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Mode coupling is less clear for non-zero chromaticity
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only stable modes
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→ Larger required frequency shift to merge modes

[Classic transverse mode coupling instability (TMCI)]

For most values of chromaticity, lowering 
the rf increases the threshold current:
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→ Lower peak current + larger chromatic 

frequency shift of Z
transverse

Unstable eigenmode is comprised of many 
Gaussian-Laguerre basis modes, and 

higher-order modes have larger Fokker-
Planck damping

We have also compared results for the 
“textbook” example of a constant wake 

function, finding qualitatively similar behavior
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results in larger effective damping rates for higher-order modes
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well with simulation results when we know the longitudinal potential
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