Staging of Independent Laser Plasma Accelerators (LPAs)

Sven Steinke*

J. van Tilborg, C. Benedetti, C. G. R. Geddes, C. B. Schroeder, J. Daniels, K. K. Swanson, A. J. Gonsalves, K. Nakamura, B. H. Shaw, H.-S. Mao, D. Mittelberger, C. Toth, E. Esarey and W. P. Leemans

*ssteinke@lbl.gov

BELLA Center, LBNL

Work supported by Office of Science, Office of HEP, US DOE Contract DE-AC02-05CH11231, by NNSA DNN R&D, US DOE and by NSF 0917687 & 0935197

Office of

High Energy Physics

High gradient LPAs offer path to colliders

- Plasma provides a structure to sustain high field gradients (GeV/m)
- High field gradients require high peak power: laser driven, particle beam driven

Limits to single stage energy gain

- Laser Diffraction (~Rayleigh range)
 - mitigated by transverse plasma density tailoring (plasma channel)
- Beam-Plasma Wave Dephasing
 - o mitigated by longitudinal plasma density tailoring (plasma taper)
- Laser Energy Depletion: energy loss into plasma wave excitation

For high gradient, laser depletion necessitates staging laser-plasma accelerators

Vision: LPA linear collider concept

Strategy report for Advanced Accelerators from DOE covers laser and beam driven plasma + dielectric wakefield

Advanced Accelerator Development Strategy Report

DOE Advanced Accelerator Concepts Research Roadmap Workshop February 2–3, 2016

Febrary 2-3, 2019

Document available on DOE-HEP website

in response to a recommendation by the HEPAP Accelerator R&D Subpanel:

"convene the university and laboratory proponents of advanced acceleration concepts to **develop R&D roadmaps** with a series of milestones and common down selection criteria **towards the goal for constructing a multi-TeV e⁺e⁻collider**"

Invited Participants

Thomas Antonsen	University of Maryland		
llan Ben-Zvi	Brookhaven National Laboratory		
Jerry Blazey	Northern Illinois University		
Yunhai Cai	SLAC National Accelerator Laboratory		
Weiren Chou	Fermi National Accelerator Laboratory (retired)		
Michael Downer	University of Texas-Austin	Other Participants L.K. Len (DOE)	
Wei Gai	Argonne National Laboratory		
Carl Schroeder	Lawrence Berkeley National Laboratory	J. Siegrist (DOE)	
Mark Hogan	SLAC National Accelerator Laboratory	G. Crawford (DOE)	
Chungguang Jing	Argonne National Lab/Euclid Techlab	J. Boger (DOE)	
Chan Joshi	University of California-Los Angeles	E. Colby (DOE) K. Marken (DOE) A. Lankford (HEPAP)	
Wim Leemans	Lawrence Berkeley National Laboratory		
Michael Litos	SLAC National Accelerator Laboratory		
Sergei Nagaitsev	Fermi National Accelerator Laboratory		
James Rosenzweig	University of California-Los Angeles	t. bakin (nor)	
Andrei Seryi	John Adams Institute		
Bill Weng	Brookhaven National Laboratory		

BELLA laser: (still) highest rep. rate PW-laser for high intensity LPA experiments towards 10 GeV

Intensity ~1.5x10¹⁹ Wcm⁻² Acc. fields ~10-50GV/m

4.25 GeV beams have been obtained from 9 cm plasma channel powered by 310 TW laser pulses (15 J)

W.P. Leemans et al., PRL (2014); A.J. Gonsalves et al., PoP (2015)

Scaling towards 10 GeV requires lower densities

LPA scaling laws

Schroeder et al., Phys. Rev ST,

13,

101301 (2010)

Scaling towards 10 GeV requires lower densities

LPA scaling laws

Laser-plasma interaction length: 0

 $L_{\rm deplete} \propto n^{-3/2}$

Accelerating gradient: (require > GV/m) Ο

$$E_{z} \sim \left(m_{e} c \,\omega_{p} / e\right) \propto \sqrt{n}$$

Energy gain (per LPA stage): Ο

$$E_z \cdot L_{\rm int} \propto 1/n$$

ns-scale Heater Pulse enables deeper channels with better mode matching

Decoupling of Ignitor and Heater

Volfbeyn et al., PoP 6, 2269 (1999) Durfee and Milchberg PRL 71, 2409 (1993)

Electron beams at the 8-9 GeV level are expected from simulations that include as many measured properties of laser and plasma

Laser: U=36 J, w0=59.8 um, T=66 fs (FWHM of intensity) Plasma: $n_0 = 1.6 \times 10^{17} \text{ cm}^{-3}$, Rcap=200 um, laser heater (2.3 J, 10 ns)

All plasma-based Staging of Laser Plasma Accelerators

ACCELERATOR TECHNOLOGY & ATA

Multistage Coupling of two independent LPAs

Stage I: Turnkey gas jet operation in ionization injection regime provides tunable injector beams of excellent stability

Multistage Coupling of two independent LPAs

Developed Active Plasma Lens for efficient e-beam coupling to the 2nd stage and emittance measurement

Tunable, ultra-high field Plasma lens

Emittance measurement: source size of 5 µm

Magnetic spectrometer:

Active Plasma Lens enables transport of 15% of the injector charge to a spotsize \leq the wakefield acceptance

Broad energy spread of the injector beam limits charge coupling to the 2nd stage wakefield due to the chromaticity of the plasma lens.

ACCELERATOR TECHNOLOGY & AT

Multistage Coupling of two independent LPAs

Tape-driven Plasma Mirror (PM) to couple in the 2nd stage laser pulse at cm-scale to maintain the overall acceleration gradient

Plasma Mirror design

- Active feedback control
- Stable operation over hours of run time

Sokollik et al. AAC proc. (2010)

Plasma mirror performance

- High reflectivity (80%)
- Excellent mode quality (Strehl ratio >0.8)
- Small pointing fluctuation (~9µm)

Multistage Coupling of two independent LPAs

Relative delay of both laser arms is controlled by an optical delay stage \bigcirc with fs-precision

Staging Experiment: Energy gain of witness beam by timing of second laser (wake phase)

Modulation period of 80fs consistent with a plasma frequency at a density of 2x10¹⁸cm⁻³

Previous plasma lens calculation suggest that 1.2pC of trapped charge corresponds to a wake trapping efficiency of 30%

 \mathcal{S}

Simulation reproduce staging signatures at correct magnitude

- Recurring post acceleration (100 MeV) at the plasma frequency
- ~1pC of charge at energies >200MeV
- Analysis of simulation results unravels details of the acceleration/ deceleration processes

ACCELERATOR TECHNOLOGY & ATAF

~10 GeV electron beams from STAGING experiment using BELLA: simulations show high efficiency capturing and acceleration in LPA2 of the bunch produced by LPA1

~10 GeV electron beams from STAGING experiment using BELLA: simulations show high efficiency capturing and acceleration in LPA2 of the bunch produced by LPA1

Longer capillary discharges are being developed and tested

27cm

Office of Science

ACCELERATOR TECHNOLOGY & ATA

A second beamline on BELLA is proposed for 5 GeV+5GeV staging and will enable ultra-high intensity experiments

A second beamline on BELLA is proposed for 5 GeV+5GeV staging and will enable ultra-high intensity experiments

Conclusions

- Inverse Bremsstrahlung heating necessary to deepen the plasma channel for 10GeV
- Turnkey operation of 100 MeV injector by ionization injection with gas jet
- Developed active plasma lens with gradients in excess of 3000 T/m to focus GeV-level e-beams for efficient coupling of accelerator stages
- First demonstration of external injection in an all-LPA staged accelerator experiment

• Future plan: Prototype the first two stages (10 GeV) of an LPA based collider

Key to success: Staging Team

BELLA Center staging experiment team, from left, are Eric Esarey, Wim Leemans, Jeroen van Tilborg, Carlo Benedetti, Kelly Swanson, Anthony Gonsalves, Joost Daniels, Sven Steinke, and Kei Nakamura. Not pictured are: Cameron Geddes, Carl Schroeder, Nicholas Matlis, and Brian Shaw. (Photo credit: Roy Kaltschmidt/Berkeley Lab)