Technological Challenges on the Path to ~3.0 MW at the SNS Accelerator

Kevin W. Jones

For the SNS team

North American Particle Accelerator Conference 2016 (NAPAC16)

October 11, 2016

ORNL is managed by UT-Battelle for the US Department of Energy



### Outline

- What is the SNS?
- Current Machine Performance
- Second Target Station Capabilities / Proton Power Upgrade
- The Path to ~3.0 MW
  - Sustainable operation at 1.4 MW

開開

100 E.C.

- Ion Source
- RFQ
- Beam Energy
- Ring Injection
- Modulators and RF
- Targets
- Activation
- Summary



### The SNS is a ~1 GeV pulsed linac and accumulator ring capable of delivering ~23.3 kJ proton pulses at 60 Hz



### The SNS is capable of sustained operation at power levels up to 1.4 MW but overall reliability has been affected by target performance



CAK RIDGE

National Laboratory | SOURCE

SPALLATION

NEUTRON

### SNS has delivered almost 34 GW-Hr of proton beam to target over 10 years and delivers 700-800 experiments/year

#### **Power on Target**



**OAK RIDGE** 

National Laboratory | SOURCE

SPALLATION

NEUTRON

# **ORNL/SNS** proposes to build an innovative Second Target Station (STS) at SNS to meet the US demand for neutrons



SPALLATION

AK KIDGE

National Laboratory | SOURCE

### The STS is the driver for the technical requirements – but the existing target station can benefit (Technical Design Report Jan. 2015) STS

### • 10 Hz

- Redirect 1 of 6 pulses to STS
- First Target Station (FTS) still receives 50 Hz

### High Brightness

- Double accelerator intensity per pulse
- Make neutron source more compact

### Cold neutrons

- Optimize cold coupled moderator
- Provisions for long beam-lines



STS will be world's highest peak brightness neutron source

Comparison with ESS and J-PARC



SNS ring compresses proton pulse to form sharp neutron pulse





# SNS has identified and is addressing barriers to routine operation at 1.4 MW with ~10% margin



National Laboratory | SOURCE

the SNS – TUA1IO03 - NAPAC16 – October 11, 2016

# The path to increased power at SNS is through the Proton Power Upgrade (PPU) project

| Accelerator power =                                                            | = Energy >                                       | × Cı               | urrent >                                                | < Pulse len                                 | gth > | Repetition r                          | rate |
|--------------------------------------------------------------------------------|--------------------------------------------------|--------------------|---------------------------------------------------------|---------------------------------------------|-------|---------------------------------------|------|
| 1.4 MW                                                                         | 0.97 GeV                                         | 26                 | 6 mA                                                    | 1 ms                                        |       | 60 Hz                                 |      |
| 2.8 MW                                                                         | 1.3 GeV                                          | eV 38 mA           |                                                         | 1 ms                                        |       | 60 Hz                                 |      |
| SRF linac<br>7 new SRF<br>cryomodules<br>Associated RF<br>support<br>equipment | <b>Copper lina</b><br>Upgrade som<br>RF equipmen | <b>c</b><br>e<br>t | <b>Rir</b><br>New inj<br>magi<br>2 no<br>extrac<br>kick | ng<br>lection<br>hets<br>ew<br>ction<br>ers | 2 N   | <b>Target</b><br>IW capable<br>target |      |

The key objective is to increase the available energy per pulse from ~23.3 to ~47kJ



# The SNS machine was built to accommodate certain upgrades

**Tunnel**: Fill 7 empty drift sections with cryomodules (space available for 9)

96% Ring + transport line magnets are 1.3 GeV ready

CAK RIDGE

National Laboratory | SOURCE

SPALLATION NEUTRON



### Klystron gallery: fill empty area with high power RF equipment

### SNS has established test facilities and processes to ensure we can achieve the PPU technical basis

|                                                                                                  | lon source test stand<br>has led to current increases,<br>demonstrating capability<br>required for PPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |  | Ring damp<br>is operation<br>insurance<br>instabilities<br>PPU int | a<br>e<br>s<br>te                                                                                                    | er system<br>I, providing<br>against<br>at higher<br>ensities |  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| Spare SRF cryomodule<br>operational since 2012,<br>demonstrating PPU<br>required cavity gradient |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spare RFQ is undergoing<br>beam tests and<br>is expected to provide<br>required PPU transmission |  |                                                                    | Plasma processing<br>for in situ cavity gradient<br>improvement of installed<br>cryomodules has been<br>demonstrated |                                                               |  |
|                                                                                                  | and the second sec |                                                                                                  |  |                                                                    |                                                                                                                      |                                                               |  |



# The SNS H- ion sources have consistently demonstrated performance that supports PPU requirements



#### Nov. 3, 2008: RFQ output current



- Current PPU approach eases ion source requirements but we would like 10% margin: keep improving
- Need ~ 46 mA out of RFQ, 55 mA into RFQ
- Utilize new Beam Test Facility and existing ion source test stand to increase margin

Existence proof: RFQ design can transmit PPU beam current



# We are making very good progress on commissioning the Beam Test Facility and spare RFQ

- Achieved 20mA RFQ output peak current required by low power commissioning plan
- Commissioned all beam diagnostics
- Measured RFQ transmission of ~90% at 20mA is close to design expectation
- Measured RFQ output energy of 2.5 +/-.02 MeV is close to design expectation and well within DTL acceptance
- Measured transmission through MEBT of >98% is determined by BCM accuracy and acceptable for beam power ramp-up
- All low current commissioning plan task are complete
- Ion source is being tuned to provide nominal RFQ output current of 40mA



National Laboratory

SOURCE

# The SNS spare high- $\beta$ cryomodule has demonstrated the PPU gradient requirement



National Laboratory | SOURCE

the SNS – TUA1IO03 - NAPAC16 – October 11, 2016

### **PPU strategy to achieve 1.3 GeV**

- Fabricate seven new high beta cryomodules inhouse and install to increase beam energy to 1.3 GeV
  - A design gradient of 16 MV/m is specified
  - Improvements will be incorporated in the cavity design to enhance performance
  - Nine empty slots available
- Utilize experience from high beta spare cryomodule
  - Maintain certain design interface points for ease of integration of new cryomodules into the existing tunnel
  - Meet the pressure requirements set forth in 10 CFR 851
- Build a medium beta spare cryomodule
  - Start in 2017
- Expand the plasma processing technique for medium beta cavities









# SNS accumulator ring injection at high beam power presents several challenges



Stripper foil mount and bracket damage

17 Technological challenges on the path to ~3.0 MW at the SNS – TUA1IO03 - NAPAC16 – October 11, 2016

**OAK RIDGE** National Laboratory

# The ring injection system will have to be replaced to accommodate the PPU beam energy of 1.3 GeV and manage stripping of excited neutron hydrogen atoms

- Ring injection is the most complicated part of the SNS accelerator complex – also the most activated
  - Most injection magnets are replaced in PPU
- Magnet requirements continue to be refined
  - "Exotic" beam loss mechanism drives magnet size



#### Excited state neutral H transport







### SNS has successfully demonstrated ~10 $\mu s$ laser- assisted stripping

- First microsecond-long laser-assisted H<sup>-</sup> stripping.
- Demonstrated stripping for 8  $\mu$ s long pulse with  $\geq$  98% efficiency.







#### Proton pulses during stripping

19 Technological challenges on the path to ~3.0 MW at the SNS – TUA1IO03 - NAPAC16 – October 11, 2016

**Fermilab** 



# Smart chopping using RF gymnastics at the end of accumulation could allow increased charge per pulse



A 5-10% increase in "average un-chopped" fraction may be possible – testing planned for Fall of 2017



Longitudinal "tricks" to recover big gap at extraction time



### Pulse flattening to achieve reliable 1.4 MW operation, provide additional LLRF control margin and support PPU

- Klystrons are at saturation at the end of the pulse with no remaining control margin
- Pulse flattening for improved LLRF control margin demonstrated and currently running on DTL-Mod5, SCL-Mod18 and test modulators
  - Utilizing frequency modulation
  - Comparable LLRF regulation error
- IGBT commutation currents increase by 40% but still acceptable



SCL-Mod18 Output Voltage with 17.8 to 23.0 kHz frequency modulation



### The Alternate Topology Modulator (ATM) shows promise for PPU and other applications

- Presently installed in HEBT test stand.
- Delivering 1.2ms 70kV 100A pulse at 60 Hz.
- 92% efficient ZVS/ZCS power conversion.
- Thermal run completed. Maximum temperatures recorded transformer (76 °C), rectifier (72 °C) and resonant capacitor (39 °C) are well within safe operating margins.
- Plan to operate at levels required for PPU after verifying safe for beam stick loads (shorted wire test)

Fixed frequency operation: output regulation 0.7% pp presently limited by phase to phase imbalance in resonant tank components.



22 Technological challenges on the path to ~3.0 MW at the SNS – TUA1IO03 - NAPAC16 – October 11, 2016





SPALLATION NEUTRON SOURCE

National Laboratory

### Modulators require some development for PPU but should achieve reliability comparable to existing modulator performance

- Modify boost transformers in warm linac to achieve required higher output voltages, esp. for 3.0 MW klystrons
- Existing medium/high beta cavity klystron:modulator ratio of 10:1 forces higher DC bus voltage for additional power
   HVCM Considerations for PPU with 3.0 MW Klystrons in DTL4
- Reduction to a 9:1 klystron:modulator ratio for first 18 new cavities (2 HVCMs), 10:1 ratio for the last 10 new cavities at reduced power levels
- 3 additional modulators required for PPU upgrade



**SCL HVCM Configuration Performance Simulations** 





# The SNS mercury target module remains a barrier to sustainable operation at 1.4 MW but we are learning rapidly





- Continue target reliability approaches
  - Gas bubble injection
  - Target redesign for higher power
  - Strain measurements on a target
  - Improved Post
    Irradiation Examination
  - Fabrication improvements
- FTS Systems
  - Re-evaluate 2 MW safety-envelope limit



### We've addressed target vessel structural challenges but high-power cavitation damage erosion remains an issue







### The target plan for PPU builds on current activities and focuses on gas bubble/wall injection and system upgrades







National Laboratory | SOURCE

Ongoing target post irradiation examination, instrumentation



the SNS – TUA1IO03 - NAPAC16 – October 11, 2016

# Activation levels in the SNS complex are manageable but some areas may challenge 1 W/m design loss at ~3 MW



### SNS is actively pursuing measurements and modeling necessary to support low-loss operaiton at ~3.0 MW



National Laboratory | SOURCE

### Summary

- The SNS machine is capable of routine, highly reliable operation at 1.4 MW but margin is needed
- Replacement of the RFQ, additional plasma processing, and modulator upgrades will provide margin for 1.4 MW operation by late 2017
- Understanding of mercury target structural issues is much improved, but cavitation damage erosion at beam powers above 1.2 MW still requires mitigation techniques to be developed
- The Proton Power Upgrade project to double the charge per pulse to ~47 kJ is well defined
  - New RFQ and incremental ion source improvements will provide the required peak current
  - 7 high beta cryomodules at 16 MV/m will raise the beam energy to 1.3 GeV
  - Ring injection modifications and extraction kicker upgrades are well in hand with robust designs
  - An aggressive target improvement plan is in place to design and build a 2 MW capable target



### Thank you for your attention!

