Production of Medical Isotopes with Electron linacs

NAPAC 2016

Chicago, IL

DAVID A ROTSCH

Chemist – NE Division

Argonne National Laboratory 13 October 2016

Radioisotopes for Medical Applications

- Used since the 1930's
 - ³²P for treatment of hematological disease
- Expanded to mainstream Diagnostic and Therapeutic
 - Diagnostic exploiting complete tissue penetration of gamma rays, including positron annihilation (SPECT and PET)
 - Therapeutic exploiting cellular toxicity of non-penetrating emissions (alpha, beta, Auger-electrons)

^{99m}Tc for excretion studies

Stress test on pig heart

-NI Berlin, et al, Radioisotope Therapy factsheet human experimentation Lawrence Berkely, 1939
-N Guehl, M Normandin, D Wooten, G Rozen, A Sitek, M Mansour, T Shoup, L Ptaszek, G El Fakhri, N Alpert, J Nucl Med 2015 vol. 56
-M Ljungberg, KS Gleisner, Diagnostic 2015, 5(3) 296-317
-http://www.ucair.med.utah.edu/FacultyKadrmas/KadrmasGroup.html accessed 2/16/2016

Radioisotopes for Medical Applications

- Targeted Detection and Therapies
 - Biological behaviors and chemical compatibility for incorporation into complex targeting molecules and bioconjugates
 - Bifunctional Chelate Approach

Nature Reviews | Drug Discovery

Radioisotopes for Medical Applications

- Monitor biological functions
 - Brain activity

- Bridges multiple disciplines
 - Inorganic and organic chemistry, physicists, radiochemists, biologists, clinicians, pharmacologists, etc.

Low Energy Accelerator Facility (LEAF)

The LEAF serves as a principal investigating conduit for research and development in nuclear applications, such as medical isotope production, radiation damage, material sciences, nuclear chemistry, homeland and national security applications.

3 MeV electron Van de Graaff Accelerator (VDG)

55 MeV L-band Electron Accelerator (LINAC)

Van de Graaf Accelerator (VDG)

- VDF Type: pulsed or D.C.
 - Electron
 - 0.3 3.0 MeV

Pulsed electron mode

- 1. Peak pulse current
 - -- continuous variable 10 mA 2 A
- 2. Pulse length
 - -- fixed pulse width system -5, 10, 25, 55 and 100 nsec
 - -- variable pulse width system
 - -- 50 ns 10 us (duty cycle limitation)
- 3. Pulse repetition rate 1 1000 pulses/sec
- 4. Beam size -0.5 cm diameter
- 5. pulse stability -- ± 2%

D.C. Electron Mode:

- 1. Max Current: 80 uA
- 2. Beam size: ~ 1 cm diameter
- The VDG can be used as an electron beam source or using a converter as a gamma source. Direct electron beam irradiations can be greater than 3,400 Mrad per hour, using the converter doses reach 9,000 Rad/hour 12" from the converter.

VDG

- Radiation Chemistry: testing equipment and material in high radiation fields.
- Specific projects:
 - Automated equipment components
 - Precipitation formation of UO_{4(s)} during irradiation
 - Radiation stability of Mo-ABO complex
 - ABEC column testing
 - HDPE bottles loaded with Mo

VDG

- Radiation Chemistry: testing equipment and material in high radiation fields.
- Specific projects:
 - Automated equipment components
 - Precipitation formation of $UO_{4(s)}$ during irradiation
 - Radiation stability of Mo-ABO complex.
 - ABEC column testing
 - HDPE bottles loaded with Mo

LINAC upgrade

Parameter	Value	Unit
Maximum beam energy	55	MeV
Minimum beam energy	20	MeV
Maximum average beam power	25	kW
RF frequency	1300	MHz
Repetition rate	240	Hz
Length of RF pulse	6.5	ms
Maximum beam pulse width	5	ms
Beam energy spread	3	%

LINAC Beam Floor Layout

LINAC Beam Floor Layout

Current and Emerging R&D

- Mother of ^{99m}Tc
 - t_{1/2} = 6 hrs
- Diagnostic
 - γ: 140 keV
 - SPECT
- Provided as a ⁹⁹Mo/^{99m}Tc Generator
 - ⁹⁹Mo t_{1/2} = 66 hrs
- Most widely used radioisotope for SPECT imaging
- 80% of 40 million procedures performed annually worldwide

• <u>67Cu</u>

Theranostic

121 keV (56%)

- 154 keV (23%)
- 189 keV (20%)
- γ: 184.6 keV (49%)
- Decays to stable Zn
- Match pair with ⁶⁴Cu
 - PET
- Uses: treatment of non-Hodgkins lymphoma, and other cancers
- Lack of supply halted clinical trials

- ⁴⁷Sc
 - Theranostic

- β-:
 - 142.6 keV (68.4%) 203.9 keV (31.6%)
 - 203.9 KeV (31.0%)
 - 440.9 keV (19%)
 - 600.3 keV (19%)
- γ: 159.3 keV (68.3%)
- Decays to stable Ti
- Match pair with ⁴⁴Sc
 - PET
- Uses: promising candidate for cancer treatment
- Chemical-cousin to lanthanides who are currently used in pharmaceuticals (MRI-CA)

Argonne's Role in Accelerating Domestic Production of Mo-99

- Major tasks
 - Preparation and irradiation of the uranyl-sulfate target solution
 - Development and design of the Morecovery system
 - Use of the LEU-Modified Cintichem process for Mo purification
 - Develop method for periodic cleanup of irradiated target solution
 - Radiation stability of system components
 - Develope understanding of radiolysis effects on
 - Solution chemistry
 - Gas generation
 - Precipitation
 - Mini-SHINE experiments sub-pilotplant

Flow Diagram

Mo-99 Production from LEU-Uranyl Sulfate

Irradiation	Max Power	Current	Time (hr)	Energy	Mo-99 produced (mCi)	Met Purity Specs	Overall Mo- 99 Yield
1	7.3 kW	208 µA	2	35 MeV	70	Yes	95%
2	9 kW	276 µA	8	35 MeV	350	Yes	86%
3	9.4 kW	269 µA	32	35 MeV	810	No	94%
4	9.8 kW	267 μA	20	37 MeV	380	Yes	42%
5	9.8 kW	278 µA	~3.25	35.2 MeV	460	Yes	70%
6	10 kW	285 µA	24	35 MeV	1400	Yes	93%

	<u>Product</u>
<u>Ratio (X/⁹⁹Mo)</u>	Specification
¹³¹ I/ ⁹⁹ Mo	≤ 5×10 ⁻⁵
¹⁰³ Ru/ ⁹⁹ Mo	≤ 5×10 ⁻⁵
¹³² Te/ ⁹⁹ Mo	≤ 5×10 ⁻⁵
⁸⁹ Sr & ⁹⁰ Sr/ ⁹⁹ Mo	≤ 6×10 ⁻⁷
Σα/ ⁹⁹ Μο	≤ 1×10 ⁻⁹
Σγ/ ⁹⁹ Mo	≤ 1×10 ⁻⁴

MCNPX Theoretical Production Curves

Argonne's Role in Accelerating Domestic Production of Mo-99

- Major tasks
 - Irradiation of sintered Mo targets
 - Chemical processing of irradiated targets
 - Optimization of disk density and dissolution kinetics
 - Optimization of large-scale dissolution (300-600 g)
 - Develop method for recycle of enriched target material
 - Radiation stability studies at VDG
 - Dispensing studies

MEDICAL RADIOISOTOPES LLC

A subsidiary of NorthStar Medical Technologies

Argonne's Role in Accelerating Domestic Production of Mo-99

- Major tasks
 - Irradiation of sintered Mo targets
 - Chemical processing of irradiated targets
 - Optimization of disk density and dissolution kinetics
 - Optimization of large-scale dissolution (300-600 g)
 - Develop method for recycle of enriched target material
 - Radiation stability studies at VDG
 - Dispensing studies

MEDICAL RADIOISOTOPES LLC

A subsidiary of NorthStar Medical Technologies

Reactor production on Mo target

Molybdenum Cycle

Mo-99 Production via NorthStar Method

Irradiation date	¹⁰⁰ Mo-Enrichement (position)	⁹⁹ Mo in 6 disks, Ci	Power	Current	Time, hrs.	Energy
1-21-15	99% (1-6)	0.92	4 kW	95 µA	19	42 MeV
3-19-15	97.4% (3-8)	2.9	7.56 kW	180 µA	21	42 MeV
3-26-15	95.1% (3-8)	2.2	7.56 kW	180 µA	19	42 MeV
5-7-15	99% (3-8)	4.2	9 kW	288 µA	24	35 MeV
9-17-15	99% (3-8)	12.4	9 kW	288 µA	6 days	35 MeV

Large-Scale Dissolution Processing

Copper-67

- Bremsstrahlung: ⁶⁸Zn(γ,p)⁶⁷Cu
 - "Clean" production with enriched target
 - ⁶⁸Zn 19% abundant
 - Separation method: sublimation
 - Has been demonstrated with large targets
 - No dissolution of main zinc mass
 - Still requires dissolution and ion exchange step
- Requires a mid to high energy linac
- ⁶⁷Cu reaction has a threshold at ~15 MeV and a peak at ~26 MeV
- Enriched targets will virtually eliminate co-produced isotopes
 - Simplifies separation chemistry
 - Exception is ⁶⁷Zn, which is stable

Copper-67

- Bremsstrahlung: ⁶⁸Zn(γ,p)⁶⁷Cu
 - "Clean" production with enriched target
 - ⁶⁸Zn 19% abundant
 - Separation method: sublimation
 - Has been demonstrated with large targets
 - No dissolution of main zinc mass
 - Still requires dissolution and ion exchange step
- Requires a mid to high energy linac
- ⁶⁷Cu reaction has a threshold at ~15 MeV and a peak at ~26 MeV
- Enriched targets will virtually eliminate co-produced isotopes
 - Simplifies separation chemistry
 - Exception is ⁶⁷Zn, which is stable

Casting Targets

Zinc Irradiations

- Varying multiple parameters
 - Converter material (W or Ta)
 - Beam power
 - Beam current
 - Irradiation "Burn" time
- Slowly increasing the activity produced

Zinc Irradiations

- Varying multiple parameters
 - Converter material (W or Ta)
 - Beam power
 - Beam current
 - Irradiation "Burn" time
- Slowly increasing the activity produced

Chemical Processing

- Sublimation
 - Tin metal was used as a holdback agent
 - SubliA Nal(TI) detector was used to monitor the sublimation
 - Sublimation reached saturation at ~250 minutes
 - 99.6% separation of zinc from copper via sublimation
- Dissolution of Cu/Sn alloy
 - HCl/HNO₃ solution
- Ion Exchange
 - Bio-Rad AG1x8 (200) column
 - Gravity flow
- Formulation specific to end user

Sublimation progress

н																	HE
Li	BE											В	С	N	0	F	NE
NA	Mg											AL	Sı	Р	S	CL	Ar
к	СА	Sc	Τι	V	CR	ΜN	Fe	Со	Nı	Cυ	ZN	GA	Ge	As	Se	Br	Kr
Rв	Sr	Y	Zr	Nв	Мо	Тс	Ru	Rн	Pd	Ag	CD	IN	Sn	Sb	TE	I	XE
Cs	BA	LA	HF	ΤΑ	W	Re	Os	IR	Рт	Αu	Hg	ΤL	Рв	Ві	Ро	Ат	RN
FR	RA	Ac	Rf	DB	Sg	Вн	Hs	Мт	Ds	Rg	С		FL		Lv		

CE	Pr	Nd	Рм	Sм	Ευ	GD	Тв	Dy	Но	Er	Тм	Υв	Lu
Тн	Pa	U	Np	Pu	Ам	Cυ	Вк	CF	Es	Fм	MD	No	Lr

Н				P-N	IS S	Swe	ep										HE
Li	BE											В	С	Ν	0	F	NE
NA	MG	ſĠ												Р	S	CL	Ar
К	СА	Sc	Τı	V	CR	MN	Fe	Со	Nı	Cu	ZN	GA	GE	As	Se	Br	Kr
Rв	Sr	Y	Zr	Νв	Мо	Тс	Ru	Rн	Pd	AG	CD	IN	SN	Sb	TE	Ι	XE
Cs	BA	LA	HF	ΤΑ	w	Re	Os	IR	Рт	Au	Hg	TL	Рв	Ві	Ро	Ат	RN
Fr	RA	Ac	Rf	DB	SG	Вн	Hs	Мт	Ds	Rg	С		FL		Lv		

CE	Pr	Nd	Рм	Sм	Ευ	GD	Тв	Dy	Но	Er	Тм	Υв	Lu
Тн	Pa	U	Np	Pu	Ам	Cυ	Вк	CF	Es	Fм	MD	No	Lr

н	ICP-MS Sweep													He			
Li	Be		Gr	eat	er t	nar	110	υ μ	g/L			В	С	Ν	0	F	NE
NA	MG	IG												Р	S	CL	Ar
К	СА	Sc	TI	V	CR	MN	Fe	ZN	GA	Ge	As	Se	Br	KR			
Rв	SR	Y	Zr	Nв	Мо	Тс	Ru	Rн	Pd	Ag	CD	IN	SN	Sb	TE	I	XE
Cs	BA	LA	HF TA W RE OS IR PT AU HG										Рв	Ві	Ро	Ат	RN
Fr	RA	Ac	Rf	DB	SG	Вн	Hs	Мт	Ds	Rg	С		FL		Lv		

CE	Pr	Nd	Рм	Sм	Ευ	GD	Тв	Dy	Но	Er	Тм	Yв	Lu
Тн	Pa	U	Np	Pu	Ам	Cυ	Вк	CF	Es	Fм	Md	No	Lr

н		_		P-M	IS S	Swe	ep	0	~ /1								HE
Li	Be		Gr Gr	eat eat	erτ ert	nar har	ו 10 ו 1	μ ma	.g/∟ /I			В	С	N	0	F	NE
NA	MG		Greater than T mg/L											Р	S	CL	Ar
К	СА	Sc	C TI V CR MN FE CO NI CU ZN										GE	As	Se	Br	KR
Rв	Sr	Y	Zr	Νв	Мо	Тс	Ru	Rн	Pd	AG	CD	IN	SN	SB	TE	I	XE
Cs	ВА	LA	HF TA W RE OS IR PT AU H										Рв	Ві	Ро	Ат	RN
Fr	RA	Ac	Rf	Dв	SG	Вн	Hs	Мт	Ds	Rg	С		FL		Lv		

CE	Pr	Nd	Рм	Sм	Ευ	GD	Тв	Dy	Но	Er	Тм	Yв	Lu
Тн	Pa	U	Np	Pu	Ам	Cυ	Вк	CF	Es	Fм	Md	No	Lr

Scandium-47

- Similar to ⁶⁷Cu production
 - Bremsstrahlung: ⁴⁸Ti(γ,p)⁴⁷Sc
 - "Clean" production with enriched target (⁴⁸Ti 73.7%)

- Requires a mid to high energy linac
- ⁴⁷Sc reaction has a threshold at ~15 MeV and a peak at ~22 MeV
- Enriched targets will virtually eliminate co-produced isotopes

Nat-Titanium Irradiations

- Beam Parameters
 - Energy: 35 MeV
 - Power: 2 kW
 - Frequency: 22 Hz
 - Irradiation time: 2 hrs

Nat-Titanium Irradiations

- Beam Parameters
 - Energy: 35 MeV
 - Power: 2 kW
 - Frequency: 22 Hz
 - Irradiation time: 2 hrs

lsotope (% abun.)	Pathway	lsotope	Ti foil 1 (μCi)	Ti foil 2 (μCi)	TiO ₂ (μCi)
⁴⁶ Ti (8.25)	(γ,pn)	Sc-44	1.85 E2	2.18 E2	1.27 E2
⁴⁷ Ti (7.44)	(γ,p)	Sc-46	9.87	1.11 E1	5.70
⁴⁸ Ti (73.72)	(γ,p)	Sc-47	1.31 E3	1.53 E3	7.16 E2
⁴⁹ Ti (5.41)	(γ,p)	Sc-48	1.15 E2	1.33 E2	6.78 E1

Nat-Titanium Irradiations

- Beam Parameters
 - Energy: 35 MeV
 - Power: 2 kW
 - Frequency: 22 Hz
 - Irradiation time: 2 hrs

lsotope (% abun.)	Pathway	lsotope	Ti foil 1 (μCi)	Ti foil 2 (μCi)	TiO ₂ (μCi)
⁴⁶ Ti (8.25)	(γ,pn)	Sc-44	1.85 E2	2.18 E2	1.27 E2
⁴⁷ Ti (7.44)	(γ,p)	Sc-46	9.87	1.11 E1	5.70
⁴⁸ Ti (73.72)	(γ,p)	Sc-47	1.31 E3	1.53 E3	7.16 E2
⁴⁹ Ti (5.41)	(γ,p)	Sc-48	1.15 E2	1.33 E2	6.78 E1

Scandium-47 Chemical Processing

- Dissolution of TiO₂
 - H_2SO_4 with excess SO_4^{-2} salt
- Dilute sample
- Perform Column Chromatography
 - Initial experiments used a syringe with commercially available slip-tip column

Scandium-47 Chemical Processing

- Dissolution of TiO₂
 - H_2SO_4 with excess SO_4^{-2} salt
- Dilute sample
- Perform Column Chromatography
 - Initial experiments used a syringe with commercially available slip-tip column

Scandium-47 Chemical Processing

- Dissolution of TiO₂
 - H_2SO_4 with excess SO_4^{-2} salt
- Dilute sample
- Perform Column Chromatography
 - Initial experiments used a syringe with commercially available slip-tip column

н																	HE
Lı	Be											В	С	N	0	F	NE
NA	Mg											AL	Sı	Ρ	S	CL	Ar
к	СА	Sc	Τı	V	CR	ΜN	Fe	Со	Nı	Cυ	ZN	GA	Ge	As	Se	Br	Kr
Rв	Sr	Y	Zr	Nв	Мо	Тс	Ru	Rн	Pd	AG	CD	IN	Sn	Sb	ΤE	I	XE
Cs	BA	LA	HF	Та	W	Re	Os	IR	Рт	Αu	HG	ΤL	Рв	Ві	Ро	Ат	RN
FR	Ra	Ac	Rf	DB	Sg	Вн	Hs	Мт	Ds	Rg	С		FL		Lv		

CE	Pr	Nd	Рм	Sм	Ευ	Gd	Тв	Dy	Но	Er	Тм	Yв	Lu
Тн	Pa	U	Νρ	Pu	Ам	Cυ	Вк	CF	Es	Fм	Md	No	Lr

н				P-N	IS S	Swe	ep										He
Li	Be											В	С	N	0	F	NE
NA	MG									AL	Si	Р	S	CL	Ar		
К	СА	Sc	Tı	V	CR	ΜN	Fe	Со	ZN	GA	GE	As	Se	Br	KR		
Rв	Sr	Y	Zr	Νв	Мо	Тс	Ru	Rн	Pd	Ag	CD	IN	Sn	SB	TE	I	XE
Cs	ВА	LA	HF	TA	W	RE	Os	IR	Рт	Au	HG	TL	Рв	Ві	Ро	Ат	RN
Fr	RA	Ac	Rf	Dв	SG	Вн	Hs	Мт	Ds	Rg	С		FL		Lv		

CE	Pr	Nd	Рм	Sм	Eu	GD	Тв	Dy	Но	Er	Тм	Υв	Lu
Тн	Pa	U	Np	Ρυ	Ам	Cυ	Вк	CF	Es	Fм	MD	No	Lr

н				P-M	IS S	Swe	ер		~ /1								HE
Li	Be		Gr	eat	erτ	nar	110	υ μ	.g/L			В	С	Ν	0	F	NE
NA	MG				-		AL	Sı	Р	S	CL	Ar					
К	СА	Sc	Tı	V	CR	ΜN	Fe	Co	ZN	GA	GE	As	Se	Br	Kr		
Rв	Sr	Y	Zr	Νв	Мо	Тс	Ru	Rн	Pd	Ag	CD	IN	SN	Sb	TE	I	XE
Cs	BA	LA	HF	TA	W	Re	Os	IR	HG	TL	Рв	Ві	Ро	Ат	RN		
FR	RA	Ac	Rf	Dв	SG	Вн	Hs	Мт	С		FL		Lv				

CE	Pr	Nd	Рм	Sм	Ευ	GD	Тв	Dy	Но	Er	Тм	Υв	Lu
Тн	Pa	U	Nρ	Ρu	Ам	Cυ	Вк	CF	Es	Fм	MD	No	Lr

Н		_		P-N	IS S	Swe	ep	0	~/								HE
Li	Be		Gr Gr	eat eat	erτ ert	nar har	ו 10 ר 1	μ Μα	.g/∟ /I			В	С	N	0	F	NE
NA	MG			out			_			AL	Si	Ρ	S	CL	Ar		
К	СА	Sc	Tı	V	CR	MN	Fe	Со	ZN	GA	GE	As	Se	Br	Kr		
Rв	Sr	Y	Zr	Νв	Мо	Тс	Ru	Rн	PD	AG	CD	IN	SN	Ѕв	TE	I	XE
Cs	BA	LA	HF	TA	W	Re	Os	IR	Hg	TL	Рв	Ві	Ро	Ат	RN		
Fr	RA	Ac	Rf	Dв	SG	Вн	Hs	Мт	Ds	Rg	С		FL		Lv		

CE	Pr	Nd	Рм	Sм	Ευ	GD	Тв	Dy	Но	Er	Тм	Υв	Lu
Тн	Pa	U	Np	Pu	Ам	Cυ	Вк	CF	Es	Fм	MD	No	Lr

Sub Critical Fission – ⁹⁹Mo

-Produced and purified Mo-99 from sub-critical fission on UO₂SO₄

 Mo-99 has met purity specifications

-Developed separation methods

- >95% recovery on initial recovery column
- >95% recovery on concentration column
- >85% recovery from LEUmodified Cintichem processing

-Developed specialized equipment for remote processing

- Gas analysis
- Separations
- Full system monitoring
- Hot Cell operations

-Studied radiation effects

- Bubble formation
- Uranyl peroxide formation
- Mo-ABO stability

-Shipped Mo-99 to GE Healthcare and Lantheus for testing <u>PASSED</u> -Fits into existing supply chain -Moving on to Phase II

Sub Critical Fission – ⁹⁹Mo

-Produced and purified Mo-99 from sub-critical fission on UO₂SO₄

• Mo-99 has met purity specifications

-Developed separation methods

- >95% recovery on initial recovery column
- >95% recovery on concentration column
- >85% recovery from LEUmodified Cintichem processing

-Developed specialized equipment for remote processing

- Gas analysis
- Separations
- Full system monitoring
- Hot Cell operations

-Studied radiation effects

- Bubble formation
- Uranyl peroxide formation
- Mo-ABO stability

-Shipped Mo-99 to GE Healthcare and Lantheus for testing <u>PASSED</u> -Fits into existing supply chain -Moving on to Phase II

¹⁰⁰Mo(γ,p) – ⁹⁹Mo

-Produced Mo-99 from solid targets

Meets purity specs

-Developed processing of targets

- Dissolution of Mo metal
- Conversion to molybdate

-Optimization of large-scale dissolution conditions

-Recycle process to recover >95% pure

and valuable enriched ⁹⁸Mo and ¹⁰⁰Mo

- Precipitation routes
- Solvent extraction routes

-Radiation stability studies at VDG

Generator system
 components

-PAT study for the Dispensing unit

-Shipped Mo-99 to NorthStar for generator trials

Sub Critical Fission – 99Mo

-Produced and purified Mo-99 from sub-critical fission on UO2SO4

- Mo-99 has met purity specifications
- -Developed separation methods
 - >95% recovery on initial recovery column
 - >95% recovery on concentration column
 - >85% recovery from LEUmodified Cintichem processing

-Developed specialized equipment for remote processing

- Gas analysis
- Separations
- Full system monitoring
- Hot Cell operations

-Studied radiation effects

- Bubble formation
- Uranyl peroxide formation
- Mo-ABO stability

-Shipped Mo-99 to GE Healthcare and Lantheus for testing PASSED

-Fits into existing supply chain

-Moving on to Phase II

¹⁰⁰Mo(γ,p) – ⁹⁹Mo

-Produced Mo-99 from solid targets

- Meets purity specs
- -Developed processing of targets
 - Dissolution of Mo metal
 - Conversion to molybdate

-Optimization of large-scale dissolution conditions

-Recycle process to recover >95% pure and valuable enriched ⁹⁸Mo and ¹⁰⁰Mo

- Precipitation routes
- Solvent extraction routes

-Radiation stability studies at VDG

Generator system
 components

-PAT study for the Dispensing unit

-Shipped Mo-99 to NorthStar for generator trials

⁶⁷Cu

-Cu-67 was produced with Specific Activity of 100 mCi/mg (⁶⁷Cu/Cu) for 2-4 mCi

-Separation of 2-4 mCi of ⁶⁷Cu within 60 hours of irradiation with a high radiological purity

-Main separation removes >99% of target material

-Sublimation of ~100 g of irradiated zinc metal using alumina tube sublimation apparatus -Standardization of sublimation

step is under investigation

-Demonstrated >99% recovery of metallic zinc from sublimation apparatus

• Vital for economical use of enriched targets

-Manipulator-friendly apparatuses are designed and being tested

-Isotope Program funding to develop production and distribution of ⁶⁷Cu

Sub Critical Fission – ⁹⁹ Mo -Produced and purified Mo-99 from sub-critical fission on UO ₂ SO ₄ • Mo-99 has met purity specifications	100 Mo(γ,p) – 99 Mo -Produced Mo-99 from solid targets • Meets purity specs -Developed processing of targets • Dissolution of Mo metal	67Cu -Cu-67 was produced with Activity of 100 mCi/mg (⁶⁷ for 2-4 mCi -Separation of 2-4 mCi of ⁶	Specific Cu/Cu)
-Developed separation >95% recourse >95% recourse >95% recourse >95% recourse >85% recourse >85% recourse >85% recourse - Developed specialize for remote procession - Gas analy Separatio - Full syster - Hot Cell c -Studied radiation ef - Studied radiation ef - Uranyl pe	oduced from Ti foils and TiO ₂ solid targets s processed of-principal separations have been performed olated with a high radiological and chemical purity Specific Activity of 996 mCi/mg (⁴⁷ Sc/Sc) was achieved for production Specific Activity of 7102 mCi/mg (⁴⁷ Sc/Sc) was achieved fo production ation removes >99% of target material time <2 hrs ation optimization underway (Batch Studies) f Titanium from dissolved solutions underway (recy mization underway	vcling) O hours of irradiat diological purity paration removes aterial tion of ~100 g of d zinc metal using limation apparatu dization of sublim nder investigation strated >99% reco zinc from sublimation ycling) vcling	ion with >99% of alumina ation wery of ation mical use gets aratuses
 Mo-ABO stability -Shipped Mo-99 to GE Healthcare and Lantheus for testing <u>PASSED</u> -Fits into existing supply chain -Moving on to Phase II 		are designed and being tes -Isotope Program funding develop production and distribution of ⁶⁷ Cu	sted to

Acknowledgments

• <u>⁹⁹Mo</u>

- George Vandegrift
- Sergey Chemerisov
- Mark Williamson
- Mandy Youker
- Peter Tkac
- John Krebs
- Mike Kalensky
- Jim Grudzinski
- Art Gelis
- M. Alex Brown
- Andy Hebden
- Thad Heltemes
- Dominque Stepinski
- Jim Byrnes
- Jim Jerden
- Megan Bennett
- Bill Ebert
- Candido Pereira
- Marty Steindler
- Del Bowers
- Roman Gromov
- Chuck Jonah
- Vakho Makarashvili
- Brad Micklich
- Lohman Hafenrichter
- Kurt Alford
- Ken Wesolowski
- Kevin Quigley
- Jim Baily
- Del Bowers
- Jackie Copple
- Momen Abdul
- All ACL Staff
- HP Support Staff

• <u>67Cu</u>

- Dave Ehst
- Del Bowers
- Nick Smith
- Sergey Chemerisov
- M. Alex Brown
- Roman Gromov
- Jim Grudzinski
- George Vandegrift
- Jerry Nolen
- HP Support Staff

- <u>47Sc</u>
 - M. Alex Brown
 - Jerry Nolen
 - Sergey Chemerisov
 - John Greene
 - Roman Gromov
 - Megan Bennett
 - Holly Dinkel
 - George Vandegrift
 - HP Support Staff
- Mo-99 work supported by the U.S. Department of Energy, National Nuclear Security Administration's (NNSA's) Office of Material Management and Minimization, under Contract DE-AC02-06CH11357.
- Cu-67 work was supported by the U.S. Department of Energy's Office of Science, Isotope Development and Production for Research and Applications (IDPRA)
- This work was performed by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.