

Progress in High Q SRF cavities development: from Single Cell to Cryomodule

Anna Grassellino NAPAC 2016, Chicago October 13th, 2016

Outline

- SRF Cavity Surface Treatments producing the Highest Q: N-doping
- High Q Preservation Magnetic Flux trapping/expulsion and sensitivity
- State of the art High Q Cavity and Cryomodule Performance, LCLS-II and future applications

Why High Q SRF cavities? For CW accelerators the refrigeration cost is of the order of several tens of millions S

Jefferson Lab Cryoplant (completed 2012) → SLAC / LCLS-II to be similar ←

The High-Q Milestones Timeline @ FNAL

2012

Discovery of N-doping

2014

Discovery of efficient/inefficient Meissner expulsion– slow vs fast cooling through Tc

2015

More than 100 N-doped cavities processed and tested, 18 cavities qualified for the 2 LCLS-II prototype cryomodules

2013

R&D effort to make N-doping controllable and reproducible

2014

LCLS-II choice of N-doping, High Q collaboration FNAL, JLAB and Cornell University

2015

N doping technology successfully transferred to industry

🛠 Fermilab

2015 and 2016

 \bigcirc

0

R&D continues deepening the understanding and improvement of doping, flux expulsion Low-T N-infusion \rightarrow higher Q with quench fields up to 45 MV/m First Cryomodule with doped cavities demonstrates avg Q ~ 2.7e10 at 2K, 16 MV/m

N-DOPING – PHYSICS AND TECHNIQUE

HIGH-Q PRESERVATION

STATE OF THE ART PERFORMANCE AND APPLICATIONS

CONCLUSIONS

The discovery of N-doping

A. Grassellino et al., Supercond. Sci. Technol. 26, 102001 (2013) - Rapid Communications

9/28/2016

🛠 Fermilab

N-doping treatment

N-doping treatment

Origin of the anti-Q-slope

Origin of reduction of RF surface resistance via N doping

- ✓ N-doping modify the mean free path
 - \rightarrow Mean free path close to theoretical minimum of R_{BCS}
- \checkmark N-doping seems to increase the reduced energy gap Δ/kT_c

9/28/2016

🛠 Fermilab

N-DOPING – PHYSICS AND TECHNIQUE

HIGH-Q PRESERVATION

STATE OF THE ART PERFORMANCE AND APPLICATIONS

CONCLUSIONS

Trapped Flux Surface Resistance

$$R_{S}(2K, B_{Trap}) = R_{BCS}(2K) + R_{0} + R_{Fl}$$

These losses can be reduced by minimizing these contributions:

🚰 Fermilab

Trapped Flux Surface Resistance

$$R_{S} \left(2 K, B_{Trap} \right) = R_{BCS} \left(2 K \right) + R_{0} + R_{Fl}$$
$$R_{Fl} = B_{ext} \cdot \eta \cdot S$$

These losses can be reduced by minimizing these contributions:

External
magnetic
fieldBext• Magnetic shielding/hygiene
improvementBext• Fast Cooling
• Material Optimizationη• Fast Cooling
• Material Optimizations• Optimizing mean free path

🚰 Fermilab

Minimization of remnant field in the cryomodule

Trapped Flux Surface Resistance

$$R_{S} \left(2 K, B_{Trap} \right) = R_{BCS} \left(2 K \right) + R_{0} + R_{Fl}$$
$$R_{Fl} = B_{ex} \cdot \eta \cdot S$$

These losses can be reduced by minimizing these contributions:

🚰 Fermilab

Fast cooldown helps flux expulsion

- Fast cool-down lead to <u>large thermal gradients</u> which promote efficient flux expulsion
- Slow cool-down → poor flux expulsion

High T baking for flux expulsion improvement

- Not all materials show good flux expulsion even with large thermal gradient
- High T treatments are capable to improve materials flux expulsion properties

High T baking for flux expulsion improvement

- Not all materials show good flux expulsion even with large thermal gradient
- High T treatments are capable to improve materials flux expulsion properties

Trapped Flux Surface Resistance

$$R_{S} \left(2 K, B_{Trap} \right) = R_{BCS} \left(2 K \right) + R_{0} + R_{Fl}$$
$$R_{Fl} = B_{ext} \cdot \eta \cdot S$$

These losses can be reduced by minimizing these contributions:

🚰 Fermilab

Light doping to minimize trapped flux sensitivity

Trapped flux sensitivity:

 $S = \frac{R_{Fl}}{B_{Trap}}$

- Bell-shaped trend of S as a function of mean free path
- N-doping cavities present higher sensitivity than standard treated cavities
- Light doping is needed to minimize trapped flux sensitivity

🛠 Fermilab

The advantage of N-doping in condition of full flux-trapping

The advantage of N-doping in condition of full flux-trapping

The advantage of N-doping in condition of full flux-trapping

Example with LCLS-II specifications

Example with LCLS-II specifications

N-DOPING – PHYSICS AND TECHNIQUE

HIGH-Q PRESERVATION

STATE OF THE ART PERFORMANCE AND APPLICATIONS

CONCLUSIONS

35 Grassellino, High Q SRF | NAPAC 2016

LCLS-II: from single cell to cryomodule

😤 Fermilab

9/28/2016

LCLS-II specification: Q = 2.7e10, 2K, 16 MV/m

Prototype cavities for LCLS-II:
 <Q> ~ 3e10 @ 2K 16 MV/m, <Eacc> ~ 22 MV/m

LCLS-II: successful transfer to industry of N doping

AES025 before doping (baseline test)
AES025 N2A6 EP5

Four times higher Q (cavity efficiency) at LCLS-II operating gradient
 Fermilab

Demonstration in a cryomodule-like environment

Q can be fully preserved from bare cavity test to fully jacketed state with RF ancillaries, in cryomodule environment

New: preliminary results for first LCLS-2 cryomodule (FNAL)

		VTS		рСМ			
	Cavity	Eacc [MV/m]	Q₀ (2K) @16MV/m	Max Gradient Reached * [MV/m]	Usable Gradient ** [MV/m]	FE onset [MV/m]	Q₀ (2K) @ 16MV/m** *
	TB9AES021	23	3.1E+10	19.6	18.2	14.6	2.6E+10
	TB9AES019	19.5	2.8E+10	17	16.8	15.6	2.6E+10
	TB9AES026	21.4	2.6E+10	17.3	17.2	No FE	2.7E+10
	TB9AES024	22.4	3.0E+10	16.5	16.0	No FE	2.5E+10
	TB9AES028	28.4	2.8E+10	14.9	13.8	11.5	2.4E+10
	TB9AES016	18	2.8E+10	16.7	16.7	14.5	2.9E+10
	TB9AES022	21.2	2.8E+10	17.4	17.1	12.7	3.2E+10
	TB9AES027	22.5	2.8E+10	16.8	16.6	13.8	2.5E+10
	Average	22.1	2.8E+10	17.0	16.6	14.7	2.7E+10
	Total Voltage	176.4		136.2	132.5		
roptly reached limited by PE limits ** Usable Gradient: demonstrated to stably run CW. *** Fast cooldow							oldown from 45k

*Max gradient currently reached, limited by RF limits, multipacting or field emission

FE < 50 mR/h, no dark current

***Fast cooldown from 45K, 40 g/sec, extrapolated from 2.11K

World Record Q cryomodule!

39 Grassellino, High Q SRF | NAPAC 2016

New recent findings: low T (120-160C) N-doping

- Doping at very low T few nanometers only of N enriched layer
- Very High Q at both medium up to very high accelerating fields, no quench field limitations (up to 45 MV/m)

Zoom in on "standard" vs "N infused" cavity surface treatment

Increase in gradient ~15%

•FNAL recently demonstrated (on single-cell cavities) a new treatment, which utilizes "nitrogen infusion".

• Achieved so far:

45.6 MV/m → 194 mT with Q > $2 \cdot 10^{10}!$

•Systematic effect observed on several cavities.

- •R&D to focus on :
 - a) Optimize the recipe;
 - b) Implement and demonstrate improvement with statistics on nine cells cavities;
 - c) Demonstrate preservation of performance in cryomodule;
 - d) Transfer technology to industry.

The importance of High at High Gradients

- Raising Q at high gradients is necessary for cost reduction of high gradient machines like ILC
- For a machine like ILC, these findings can turn into >10% cut in machine costs

ILC cost vs. gradient and Q - 500 GeV

N-DOPING – PHYSICS AND TECHNIQUE

HIGH-Q PRESERVATION

STATE OF THE ART PERFORMANCE AND APPLICATIONS

CONCLUSIONS

Conclusions

- Record Q at medium and high accelerating gradients reproducibly achieved with N doping technology, from single cell cavities to multi-cells cavities in accelerator environment, at different labs, technology now transferred to industry and proven all the way down to cryomodule
- Efficient magnetic flux expulsion discovered, can be achieved with fast cooldown and material optimization
- Unprecedentedly low magnetic field levels <2mGauss achieved in cryomodule
- N-doping even with larger B-sensitivity leads to higher Q-factors than state of the art treatments for trapped B< 10 mG
- Very High- Q at ultra high gradients now possible with low T Ndoping – more to come!

Thank you for your attention!

