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Outline

« World-wide context for high field accelerator magnet R&D
« Qverall Goals for magnet technology development

« Current status of the technology

« Challenges

« Overview of magnet R&D programs and roadmaps
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Future Circular Collider Study

GOAL: CDR and cost review for the next EuS (2019)

International FCC collaboration
(CERN as host lab) to study:

« pp-collider (FCC-hh)
= main emphasis, defining
infrastructure requirements

~16 T = 100 TeV pp in 100 km

e 80-100 km tunnel infrastructure .
) ] o Schematic of an
in Geneva area, site specific 4 80-100 km

long tunnel
« e*e collider (FCC-ee),
as potential first step

« p-e (FCC-he) option,
integration one IP, FCC-hh & ERL

HE-LHC with FCC-hh technology
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R Design //

Collider Designs

R&D Programs

Infrastructures
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FCC Scope:

Accelerator and Infrastructure

FCC-hh: 100 TeV pp collider as long-term goal
—> defines infrastructure needs
FCC-ee: e*e- collider, potential intermediate step

| HE-LHC: based on FCC-hh technology

| Launch R&D on key enabling technologies

in dedicated R&D programmes, e.g.
16 Tesla magnet program, cryogenics,
SRF technologies and RF power sources

Tunnel infrastructure in Geneva area, linked to

CERN accelerator complex;
site-specific, as requested by European strategy

Courtes of Michael Benedikt, CERN
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In China: CEPC-SPPC

CEPC is an 240-250 GeV Circular Electron Positron Collider, proposed to
carry out high precision study on Higgs bosons, which can be upgraded to

a 70 TeV or higher pp collider SPPC, to study the new physics beyond the
Standard Model.

e+

IP1

SppC HE Booster

SppC LE Booster

1P4 1P2

50/100 km in circumference
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SPPC Magnet Specifications

SPPC Main dipoles
 50/100 km in circumference « Field strength: 20 Tesla
* C.M. energy 70 TeV orhigher Aperture diameter: 40~50 mm

« Timeline
Pre-study: 2013-2020 « Field quality: 104 at the 2/3 aperture radius
R&D: 2020-2030 - Outer diameter: 900 mm in a 1.5 m cryostat

Eng. Design: 2030-2035

) « Tunnel cross section: 6 m wide and 5.4 m high
Construction: 2035-2042

LSST F
{TP4-pp)

CEPC

L5546
{Collimation )

The CEPC-SPPC ring sited in Qinhuangdao, s
50 km and 100 km options .

Courtesy of Qingjin Xu, IHEP

Refer to CEPC-SPPC Pre-CDR, Mar. 2015: http://cepc.ihep.ac.cn/pre CDR/volume.html
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U.S. Energy Frontier Strategy — Particle Physics Project

Prioritization Panel (P5) Report*

“The future of particle physics depends critically on transformational
accelerator R&D to enable new capabilities and to advance existing
technologies at lower cost. “

 “The program is driven by the physics goals, but future physics opportunities
will be determined by what is made possible.”

« “Going much further, however, requires changing the capability-cost curve of
accelerators, which can only happen with an aggressive, sustained, and
imaginative R&D program.”

« “Primary goal, .... build the future-generation accelerators at dramatically
lower cost. For, example, the primary enabling technology for pp colliders is
high-field accelerator magnets, . ..”

« “Strengthen national laboratory-university R&D partnerships, leveraging their

diverse expertise and facilities.”

*“Building for Discovery: Strategic Plan for U.S. Particle Physics in the Global Context,” P5 Report, http://science.energy.qgov/~/media/hep/hepap/
pdf/May%20 2014/FINAL_P5_Report_053014.pdf
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Accelerator R&D Subpanel reinforced the PS5

recommendations®

« Participate in international design studies for a very high-energy proton-
proton collider. ..

Vigorously pursue major cost reductions ... targeting potential
breakthroughs in cost-performance.

« Support accelerator design and simulation activities that guide and are
informed by the superconducting magnet R&D

« Form a focused U.S. high-field magnet R&D collaboration that is
coordinated with global design studies ...

The over-arching goal is a large improvement in cost-performance.

*Accelerating Discovery: A Strategic Plan for Accelerator R&D in the U.S.
(HEPAP Accelerator R&D Subpanel Report, April 2015); http://science.energy.gov/hep/hepap/reports
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Accelerator R&D Subpanel recommendations

« Aggressively pursue the development of Nb,Sn magnets . ..

- Establish and execute a high-temperature superconducting
(HTS) material and magnet development plan . ..

« Engage industry and manufacturing engineering disciplines to
explore techniques to both decrease the touch labor and
increase the overall reliability of next-generation
superconducting accelerator magnets.

« Significantly increase funding for superconducting accelerator
magnet R&D . ..
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Magnet Goals are similar around the world

- High field (16 — 20T)

= 16T is a practical limit for Nb;Sn
= 20T requires use of High Temperature Superconductors (HTS)

Both Nb,;Sn and HTS are new to accelerator technology
« Bore diameter (40 — 50mm)

« All at reduced cost per T-m

= Materials

- Lab_or__ Must consider overall
= Reliability system cost

= Margin
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Goals require technology well beyond State-of-the-Art

Snap shot of the current status of magnet technology

« 27 km of NbTi magnets running at 1.9K and 7 - 8T

* More than half a century after discovery, Nb;Sn is ready for major
implementation in an operating accelerator. HL-LHC

« Some significant improvements in HTS conductors, but much left to do.

* High field accelerator magnet development has reached 14 — 15T. Getting
close to the Nb;Sn limit.

« Training is still a problem

 Arelevant historical note:

The program that developed the technology for a critical upgrade of the LHC was started at LBNL
more than 20 years before the LHC turned on and while the SSC was still the flagship project of US HEP
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Some progress towards higher field accelerator magnets

Dipole Field for Hadron Collider
20
18
HTS

16 S _--"" Realm for
- " 100TeV
5— 14 “ HL-LHC optimization
T 2 Nb,Sn Fa
= 10
- —

o o

g 2 Nb'TI ,”," LHC
u ” -

L | revaton -~ %hera RHIC % Nb3Sn cos9 LARP QUADs

2 e

0 SPS & Main Ring (resistive)

1975 1985 1995 2005 2015 2025 2035
Year

©® Nb-Ti operating dipoles; ® Nb3Sn cos9 test dipoles ® Nb3Sn block test dipoles
S. Prestemon. L BNL
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Starting point for magnet technology

Common Coil

4 Stress
management

4.5T 5.3T 3.5T
HERA, RHIC,
9m. 75 mm 9 m, 80 mm

416 dipoles 264 dipoles

Tevatron,
6 m, 76 mm
774 dipoles

Shiltsev/Zlobin, (FNAL) SSC. 50mm  LHC. 56mm %TT(?H%OK"””" VLHC, 43mm

6.6T, 4.3K 8.3T, 1.9K  FNAL/CERN 10T, 4.5K
et e ST — otceot  ATAPY
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Nbs3Sn technology is being readied by LARP: FNAL, BNL, LBNL
HQ »QXF ™ Hi-Lumi upgrade

Iron yoke

Iron Master
Pads ' keys

Aluminum

shell
. Aluminum
Aluminum pole key
bolted collars

Loading keys
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High field magnets require high field conductors

Material NDbTi Nb3Sn (Nb3AI) Bi-2212 YBCO
Max Field 1011 T 1617 T Stress limited | Stress limited
) ] ~675°C in Ar/ ~890°C in O,
Reaction Ductile Vacuum (+2°C) None
Wire ax'?' N/A Reversible Irreversible? Reversible
compression
Transverse N/A < 200 MPa 60 MPa? > 150 MPa'
stress
Insulation All S/E Glass Ceramic All
: G-10, Bronze/Titanium,
Construction stainless... Stainless Super alloy All
~0.01 m/s?
Quench ~0.05 m/s?
) >20m/ ~20 m/ .
propagation me me (42K, 8T)?2 (4'f2ielfa)s o

1. Cheggour et al., IEEE TAS (2007) 17(2), pp. 3063 — 3066.
2. Trociewitz et al., SuST 21 (2008) 025015.
3. Song and Schwartz, IEEE TAS (2009) 19(5), pp. 3735 — 3743.
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Achieving Aggressive Goals Requires a Paradigm Shift

«  Old Paradigm: Need ~ 20% operating margin

«  So, for 16T operating field we would need a 20T magnet
«  This exceeds the limit for Nb;Sn and requires HTS
«  Significantly higher cost than NbTi. The last 2 — 3T is expensive!

=New Paradigm: Increase fraction of operating field. Could potentially save billions for a collider.
Note on conductor cost. (highest quality material available)

NbTi ~ “1” Upshot: HTS is not a

_ candidate for ring magnets
Nb,Sn ~ 10 X NbTi
Bi-2212 and YBCO ~ 10 X Nb,Sn

So, an additional 2T using HTS for an insert would cost 1.5X as much
as for the first 16T using Nb;Sn

Old Paradigm: Some training and possible retraining are undesirable but expected and accepted
Conflicts with increase in fraction of operating field

New Paradigm: Understand and minimize or eliminate training (not trivial). -
Linked to relaxing operating margin requirement.
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HD-1 exhibited “acceptable” training performance

18 LBNL short-sample

:::I::I::I::::::::::::::::::::::::::::::::::::'=Weneedthis
16 | OXFORD short-sample

78% of S Y i To get this
short sample 4,

—_
o

Bore field (T)

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Training quench number
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Achieving Aggressive Goals Requires a Paradigm Shift

*  Old Paradigm: Need grading to minimize conductor

- Still true. Even more so with expensive conductor and more of it needed for higher fields. However,
grading increases stress and Nb,;Sn is stress limited (~ 200 MPa)

« New Paradigm: Need a design that keeps coil stresses within limits. Grading is particularly effective
for multi-layer coils required for high fields

*  Old Paradigm: Large bore is desirable but expensive

«  Still true but not as much. For high fields, bore size has relatively small impact on conductor
quantity. Coil width is large compared to bore size. But, larger bores lead to higher stress.

New Paradigm: Don’t obsess over this parameter. Eye on stress, but other issues may dominate.

*  Old Paradigm: Test and measure field of all magnets

«  Wasn't intended for LHC but ultimately that was the case

New Paradigm: Magnets have to be as simple and reproducible as possible.
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Summarizing the key elements of the new paradigm

1) Decrease operating margin

2) Minimize or eliminate training

3) Fully utilize grading

4) Flexible choice of bore diameter

5) Manufacturability (reliability and reproducibility)

+ Take baseline technologies to higher level of performance

. The HD magnets are on the asymptote for Nb,Sn so it will be difficult

« Combine with a strong component of high-risk, potentially high payoff disruptive technology
development that can leapfrog the status quo

« A parallel program of supportive R&D
. Advanced materials R&D

. Explore other applications of the new technology that challenge current capabilities
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The Programs
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CERN-EU program: "‘EuroCirCol’

on 16 T dipole design

TAMPERE European Union

)
UNIVERSITY OF TWENTE. INFN = vuversirr o .
&% TECHNOLOGY Horizon 2020 program
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Common coil Swiss contribution
via PSI

Canted
Cos-theta
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IHEP: Concept of the SPPC 20-T Dipole Magnet

Q. Xu et al.

Bl (T)

20-T dipole magnet in common coil
configuration two 50 mm beam pipes; load
line 80% @ 1.9 K

2042
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1719
16.12
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5.373
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3.224
2149
1.074

ROXIE 102

. NbsSn outer coil

b. NbsSn inner coil

c. HTS outer coil

d. HTS innerb coil

e. HTS innerc coil
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Main parameters of the magnet

Number of apertures 2
Aperture diameter (mm) 50
Inter-aperture spacing (mm) 333
Operating current (A) 14700
Operating temperature (K) 4.2
Operating field (T) 20
Peak field (T) 20.4
Margin along the load line (%) 11
Stored magnetic energy (MJ/m) 7.8
Inductance (mH/m) 72.1
Yoke ID (mm) 260
Yoke OD (mm) 800
Weight per unit length (kg/m) 3200

Energy density (coil volume) (MJ/m®) 738
Force per aperture — X /Y (MN/m) 23.5/4.4
Peak stress in coil (MPa) 240
Fringe Field @ r =750 mm (T) 0.02

Integrated field quality

Integrated b, & a, Value (104)
b 0.14
b5 1.42
b7 -0.40
a2 -0.29
a4 -1.81
ab 0.03

0. Xu et. al., 20-T Dipole Magnet with Common Coil Configuration: Main Characteristics and Challenges, IEEE Trans. Appl. Supercond., VOL. 26, NO. 4, 2016, 4000404
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IHEP: R&D Steps towards 20-T Dipole Magnet

Q. Xu et al.

15t step

ongoing

Fabrication of 15-T Nb,;Sn
and Nb;Sn+HTS subscale
magnets, to test the stress
management method for
Nb,Sn & HTS coils and the
quench protection method
for HTS coils; By the end of
2018.

2" step
Fabrication of 15-T Nb;Sn
and Nb;Sn+HTS operational
field dipole magnet with two
®50 mm beam pipes and
10+ field quality, to test the
field optimization method
for HTS coils;

To be funded.

3rd ste
Fabrication of a 20-T magnet
with Nb;Sn+HTS or only one
of them, if significant
progress on performance of
Nb,Sn or HTS
superconductors, i.e., J_ is
increased 3~6 times with
significant cost reduction.

0. Xu, K. Zhang, C. Wang et. al., 20-T Dipole Magnet with Common Coil Configuration: Main Characteristics and Challenges, IEEE Trans. Appl. Supercond., VOL. 26, NO. 4, 2016, 4000404
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The US Magnet Development Program has been

launched (HEPAP ARD Subpanel Recommendation)

" The U.S. Magnet Table of Contents
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Goals Derived from P5 and ARD Subpanel

Recommendations

GOAL 1:

Explore the performance limits of Nb;Sn accelerator magnets with a focus on minimizing
the required operating margin and significantly reducing or eliminating training.

GOAL 2:

Develop and demonstrate an HTS accelerator magnet with a self-field of 5 T or greater
compatible with operation in a hybrid LTS/HTS magnet for fields beyond 16 T.

GOAL 3:

Support the above efforts by addressing fundamental aspects of magnet design and technology
that can lead to substantial performance improvements and magnet cost reduction.

GOAL 4:

Pursue Nb,;Sn and HTS conductor R&D with clear targets to increase performance and reduce
the cost of accelerator magnets.
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(1) High Field Dipoles to explore the limits of Nb,Sn

Loading keys

Two-pronged approach

* Areference design based on cosine-theta

Aluminum shell

Individual turns are separated by Ribs

Ribs inte_rcept forces < a
« A path to explore innovative designs — transferring them 3

to the spar
starting with the Canted Cosine-Theta (CCT) p

Individual
turns

Stress collector (Spar)
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(2) High Field Dipoles to explore the limits of HTS

Two candidate HTS conductors

* BI-2212 sub-scale magnets in racetrack
and CCT configuration
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(3) Backbone of the Program: Magnet Science and

Developing Underpinning Technologies

Some examples:

« Training studies

* Modeling

« Diagnostics, quench detection, protection

« Develop infrastructure, e.g. insert testing

 New materials — insulation, impregnation and structural
« Design comparison and cost analysis to guide program

Improvements from the technology development program will be
integrated into Nb;Sn and HTS magnets
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(4) Superconducting Materials R&D is Critical for Program

Success

* Push performance limits of Nb;Sn and HTS conductors
based on magnet needs

 Understand —

o Uniformity and reliability
o Scalability and future cost
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Closing remarks

«  World-wide activity in magnet R&D is ramping up

 International cooperation is a necessity

« Challenges are significant but we are looking forward to it!
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