

NAPAC - 2016

Compact Carbon Ion Linac

P.N. Ostroumov Physics Division, Argonne National Laboratory FRIB, Michigan State University

Contributors: A. Plastun, A. Goel, B. Mustapha, A. Nassiri (ANL) L. Faillace, S. Kutsaev, E. Savin (RadiaBeam, Santa-Monica, California)

Outline

Compact Carbon linac

- General layout
- Main application
- $\hfill\square$ Low- β and High- β accelerating structures
- Power consumption
- End-to-end beam dynamics simulation
- Comparison with synchrotron

□ Testing of beta=1 high gradient S-band accelerating structure

Summary

Advanced Compact Carbon Ion Linac (ACCIL)

1 GV voltage over 45 meters

Compact carbon ion linac

S-band accelerating structure

Two main reasons to use S-band accelerating structure in therapy linac:

$$k, b, T \sim f^?$$

Higher effective shunt impedance per unit length

$$ZT^2 = \frac{(E_0 T)^2}{P/L}$$

 $ZT^2 \sim \sqrt{f}$

Accelerating efficiency / Effective shunt impedance

Compact carbon ion linac

RFQ and DTL (476 MHz)

	RFQ	DTL
lons	C ⁵⁺	C ⁶⁺
Energy in, MeV/u	0.025	-
Energy out, MeV/u	3	20
Length, m	4	5.82
Epeak, Kilpatrick units	2.6	2.0
Aperture radius, mm	2.0	5.0
Q ₀	104	5*10 ⁴
Intervane voltage, kV	80	-
Real estate acc. Gradient, MV/m	~1.0	3.5
P _{pulse} , MW	0.44	4.88

Brazed segment of 352 MHz Linac4 RFQ (Courtesy of CERN)

Beam dynamics

DTL: Carbon Beam transverse emittance = 0.5π mm mrad

<u>DTL: Proton Beam transverse emittance = 0.5π mm mrad</u>

Coupled-cavity DTL (952 MHz)

Compact carbon ion linac

High-Gradient S-band standing wave structures

Side-Coupled Structure

SW stabilized 50 MV/m structures

Cut-Disk Structure

Disk-And-Washer structure

Biperiodic Accelerating Structure

By Evgeny Savin (RadiaBeam)

The choice of structure for high- β part will be based on thermal and mechanical design

P.N. Ostroumov

Compact carbon ion linac

Backward traveling wave (BTW)

- Magnetic coupling through off-axis holes
- Can provide high accelerating gradients due to reduced density of Poynting vector
- Designed to operate at constant accelerating gradient

Beta = 0.43 BTW structure

 Temperature (left), mechanical stress (central) and displacement (right) maps of BTW structure

Compact carbon ion linac

P.N. Ostroumov

Dispersion diagram for travelling wave structure with magnetic coupling holes

15-cell 3D model for negative harmonic TW structure

P.N. Ostroumov

CCL

Constant EOT = 50 MV/m along the whole high- β part (19 tanks)

 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C</t

Ions: Carbon (6+) Energy Range: 45 – 450 MeV/u Length: 0.32-1.4 m Q: 8500..17000 RF Power: 1041 MW $ZT^{2} = 26..64 M\Omega/m$ Esmax: 2.17 Kilpatricks 2a = 0.6 cm $E_0 = 67-72 \text{ MV/m}$ $E_0T = 50 MV/m$ $\phi_s = -20 \text{ deg}$ G = 120 T/m $L_q = 14.0$ cm

Doublet focusing lattice

Coupling cells aren't shown

Effective shunt Impedance

Power consumption @ 120 Hz

	RFQ 476 MHz	DTL 476 MHz	C-DTL 952 MHz	CCL 2856 MHz
Pulsed RF power	0.44 MW	4.88 MW	12.7 MW	1041 MW
Average RF power	0.54 kW	30 kW	26 kW	356 kW
RF source efficiency	40 %	40 %	40 %	40 %
"Plug" power	1.34 kW	75 kW	65 kW	890 kW

RFQ DTL CDTL CCL

Total wall plug power: 1,031 kW

P.N. Ostroumov

Compact carbon ion linac

Dynamics of carbon beam

P.N. Ostroumov

Compact carbon ion linac

Comparison

MedAustron

Synchrotron Vienna, Austria (Started operation in 2015)

Accelerator cost \$95M < \$50M

Power consumption*

5 MW

1 MW

45 m

Perimeter/Length 77 m

* Power values don't include power for gantry magnets

P.N. Ostroumov

Compact carbon ion linac

5-cell beta=1 test cavity

- Cavity was built by RadiaBeam for high gradient electron linac
- Initial high power test at LLNL @ 10 Hz rep rate and max field 45 MV/m

Parameter	Simulated value	
f _π	2.856 GHz	
R _s (Effective R _s)	93 MΩ/m (51 MΩ/m)	
Δf	2.5 MHz	
Qo	19,500	
R/Q	143.2 Ω	
Eacc	50 mV/m	
E _{max} /E _{acc}	1.8	
P _{diss} /cell	2.4 MW	

P.N. Ostroumov

Compact carbon ion linac

RadiaBeam HGS structure at Argonne Test Facility (Advanced Photon Source, ANL).

- This 5-cell 2856 MHz cavity for electrons (beta=1.0) was developed and built by Radiabeam for high gradient application
- After backing, initial conditioning the testing was performed at 30 Hz
- 16.7 MW @ 2 µs was finally achieved. Cavity was operated for 24 hrs at this level. Corresponds to 52 MV/m Eacc.

P.N. Ostrou

10, 2016

RF conditioning

- Cavity conditioning started on 25th Feb, 2016 with 30Hz Rep rate
- Stable operation of ~10MW was achievable. But severe outgassing prevented further progress
- The cavity was baked to 110°C for 3 days (Mar 18th-20th). Static vacuum levels improved from 5.10⁻⁸ Torr to 5.10⁻⁹ Torr level.
- Stable operation at 12MW@1.8µs was achieved on 30th March but operation beyond this levels was unstable.
- Another bake was scheduled at 130° C for 3 days (Apr 1st-3rd).
 Static vacuum levels improved to 8.10⁻⁹ Torr.
- After initial conditioning power levels of 16.7MW@2µs was finally achieved. Cavity was operated for 24 Hrs. at this level.
- Pulse length was increased to 3µs and conditioning was started at 14MW after 6 Hrs at this level the cavity behavior changed and the test was stopped.
- All data were collected over EPICS so limited to 1 data sample per 4 seconds

Data analysis

- Cavity field, Breakdown event counts and time spent at each level was calculated.
- Vacuum spikes above 2.10⁻⁷ on cold cathode gauge was defined as a breakdown event.
- Breakdown Rate (BDR) defined as No. of breakdown events per hour (varying definitions in literature)
- Cavity needs 3µs to reach steady state value.
- Open circles represent highest power level at each pulse width.

Compact carbon ion linac

Data analysis

Breakdown rate becomes more frequent at higher field levels

Summary

- □ Compact carbon ion linac is feasible
 - Pulse-to-pulse adjustable beam energy
 - The same linac can deliver protons
- ACCIL features
 - Compact, ~45 meters
 - 22 klystrons, 19 klystrons are SLAC-type
 - ~1.02 MW wall plug power for RF, the goal is to reduce this value down to ~0.7 MW with optimized design
- □ Application: carbon beam cancer therapy
 - Fast 3D scanning of the tumor, not available with synchrotrons or cyclotrons
 - Lower construction and operational costs than for synchrotrons
- □ Challenges
 - Handling of high heat load in CCL, 25 kW/m average dissipated power at 120 Hz repetition rate
 - High alignment accuracy of accelerator components