Yuri K. Batygin, Tyler T. Fronk

Abstract

The presence of duodecapole components in quadrupole focusing field results in excitation of sixth-order single-particle resonance if the phase advance of the particles transverse oscillation is close to 60°. This phenomenon results in intensification of beam losses. We present analytical and numerical treatment of particle dynamics in the vicinity of sixth-order resonance. The topology of resonance in phase space is analyzed. Beam emittance growth due to crossing of resonance islands is determined. Halo formation of intense beams in presence of resonance conditions is examined.

Duodecapole Component

Magnetic vector potential of lens with quadrupole symmetry

Vertical component of magnetic field along abscissa

Particles traveling through quadrupole receive kick which $A_{z}=-\left[\frac{G_{2}}{2} r^{2} \cos 2 \theta+\frac{G_{6}}{6} r^{6} \cos 6 \theta+\ldots\right]$ $B_{y}(x, 0)=G_{2} x+G_{6} x^{5}+\ldots$. contains both linear $\Delta \frac{d x}{d z}=\frac{q D}{m c \beta \gamma}\left(G_{2} x+G_{6} x^{5}+\ldots\right)$ and non-linear parts

Minimization of G_{6}

Minimization of duodecapole component $I_{1}=0.4852, I_{2}=0.5741, I_{3}=0.77$
(I.M. Kapchinsky, "Theory of Linear

Resonance Accelerators", Harwood, 1985)

Hamiltonian of Sixth Order Resonance

Phase advance per FODO period: $\mu_{o}=\frac{S}{2 D} \sqrt{1-\frac{4}{3} \frac{D}{S}} \frac{q G_{2} D^{2}}{m c \beta \gamma}$
$\underset{\text { Matrix of }}{\text { focusing period }}\binom{x_{n+1}}{p_{n+1}}=\left(\begin{array}{cc}\cos \mu_{o} & \sin \mu_{o} \\ -\sin \mu_{o} & \cos \mu_{o}\end{array}\right)\binom{x_{n}}{p_{n}+\Delta p_{n}}$
p is the modified momentum and Δp is the non-linear quick due to presence of duodecapole $p=\frac{S}{\mu_{o}} \frac{d x}{d z} \quad \Delta p=\delta_{5} x^{5}$ component
Strength of non-linear duodecapole kick $\delta_{5}=2 \frac{q G_{6} D S}{m c \beta \gamma \mu_{o}}$

Transformation to action-angle variables	$\begin{gathered} x=\sqrt{2 J} \cos \psi \\ p=-\sqrt{2 J} \sin \psi \end{gathered}$
Normalized emittance of the beam	$\varepsilon=2 J \beta \gamma \frac{\mu_{o}}{S}$
Deviation from "resonance" angle 60	$\boldsymbol{\vartheta}=\mu_{o}-\pi / 3$
Hamiltonian describ near sixth orde	g slow motion resonance
$H(J, \psi)=J \vartheta-\frac{\delta_{5}}{4}$	$J^{3}-\frac{\delta_{5}}{24} J^{3} \cos 6 \psi$

Topology of $6^{\text {th }}$ order resonance.

Fixed Points and Island Size

Single Particle Dynamics in FODO Lattice

Fixed points (stable and unstable) are determined by equations:
$\frac{d J}{d n}=-\frac{\partial H}{\partial \psi}=-\frac{\delta_{5}}{4} J^{3} \sin 6 \psi=0$
$\frac{d \psi}{d n}=\frac{\partial H}{\partial J}=\vartheta-\frac{3}{4} \delta_{5} J^{2}\left[1+\frac{\cos 6 \psi}{6}\right]=0$

First equation has a solution $\sin 6 \psi=0$ or $\cos 6 \psi=+/-1$.

Unstable points: $\cos 6 \psi=1$ Stable points: $\quad \cos 6 \Psi=-1$
$\begin{gathered}\text { Action at } \\ \text { unstable point }\end{gathered} J_{u}=\sqrt{\frac{8}{7} \frac{\vartheta}{\delta_{5}}} \quad \psi_{u}=\frac{\pi}{3} k$
$\begin{gathered}\text { Action at } \\ \text { stable point }\end{gathered} J_{s}=\sqrt{\frac{8}{5} \frac{\vartheta}{\delta_{5}}} \quad \psi_{s}=\frac{\pi}{6}+\frac{\pi}{3} k$
$\underset{\text { Action value }}{\text { Maximum }} \quad J_{\max }=1.54 \sqrt{\frac{8}{7} \frac{\vartheta}{\delta_{5}}}$
Beam emittance limited by unstable points

Direct Integration

Dynamics of single particle in FODO focusing channel with $D / S=1 / 3$ and phase advance $\mu_{o}=62.6^{\circ}$.

Distortion of Beam Emittance

Effect of Space Charge on Beam Dynamics Near Resonance
Near 6 ${ }^{\text {th }}$ Order Resonance
(a)

(a)

$\times(\mathrm{cm})$
(b)

(c)

x (cm)
$\mathrm{N}=8$

x (cm)
(b)

Dynamics of the beam in the vicinity of $6^{\text {th }}$ order resonance for different beam distributions in the lattice with $\mu_{0}=86^{\circ}$: (a) water bag, $\mu=58^{\circ}$ (b) parabolic, $\mu=54^{\circ}$ (c) Gaussian, $\mu=38^{\circ}$. Numbers indicate FODO period.

