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Abstract Duodecapole Component Minimization of G,

The presence of duodecapole components _ Jf T YT
in quadrupole focusing field results in Magnetic vector G G
excitation of sixth-order single-particle potential of lens A, = (=277 cos20+—L27"cos 66 +..]
resonance if the phase advance of the particles  With quadrupole 2 6
transverse oscillation is close to 60°. This symmetry <\/
.

phenomenon results In intensification of beam  Vertical component 0 5 a— /)

losses. We present analytical and numerical of magnetic field By(x’ ) =G X+ Gex” + ... AN S VI /\30

treatment of particle dynamics in the vicinity of along abscissa L - N .
sixth-order resonance. The topology of . 4 g
resonance in phase space Is analyzed. Beam Particles traveling Minimization of duodecapole component
emittance growth due to crossing of resonance through quadrupole dx gD I,=0.4852,1,=0.5741, I, = 0.77
islands is determined. Halo formation of receive kick which A— = (G,x + G6x5 +...) (1.M. Kapchinsky, “Theory of Linear
intense beams in presence of resonance contains both linear dz mcpy Resonance Accelerators”, Harwood, 1985)
conditions is examined. and non-linear parts

Hamiltonian of Sixth Order Resonance

Phase advance S 4 D qG,D’ Transformation X =~2Jcosy

per FODO periOd: luo = EN 1 3 S mC/J)')/ to action_angle
variables p=— /2] SiIll/J | Iy i

( cosu, Sinu, \/xn

: Normalized emittance u
L _Slntuo COSMO Jl\pn-l-Apn) of the beam E = 2Jﬁy SO

. . g . . J
p is the modified Deviation from K/ u
momentum and 4p is the _ S dx Ap =S 5 “resonance” angle 60° U = u —7Ja /3 o .
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non-linear quick due to u dZ -
presence of duodecapole ¢ Hamiltonian describing slow motion .
component near sixth order resonance
Strength of non-linear _ qGéDS 55 3 (35 3
duodecapole kick 05 =2 mef3 H(J,W)=J0-—=>J" ——=J cos6y
Y Y, 4 24 Topology of 6t order resonance.
Fixed Points and Island Size Single Particle Dynamics in FODO Lattice
Fixed points (stable and unstable) Matrix Method Direct Integration
are determined by equations: Action at 8 O Y = u 1.0 — . .
unstable point S = \ 75 T3 o, Seeety”
dJ oH Os .3 . 5 5104 e — &
dn 9 g smow =0 > A
n ¢ .’ s °
lp . 8 ﬁ w — E + E k - O e‘. & °
Action at J, = S 6 3 o 0.0 E 0 s .
dy oH 3 cos 6 i | * . %
—w=—=ﬁ——55J2[1+ Y, _ stablepoint \' 56, B s o
dn (9] 4 6 .‘: e °
—0.3 A4 N—4 ‘o'...' = ) e )
Maximum 8 U | -510 T st
. . . : J =154 w0
First equation has a solution Action value max N 75 Lol . . | - | | o
sin 6y =0 or cos 6y = +/-1. : 1.0 05 0.0 0.5 1.0 -1.0 =05 0.0 0.5 1.0
Beam emittance 329 . u X X {cm)
Unstable points: cosby = 1 limited by £ = Py —2 Dynamics of single particle in FODO focusing channel with
Stable points:  cosby = -1 unstable points \ 7 6, 5 D/S=1/3 and phase advance u = 62.6°.
Distortion of Beam Emittance Effect of Space Charge on Beam Dynamics Near Resonance
Near 6" Order Resonance
N=0 N =34 N=0 N=S8 N=0 N=38
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(b) 5104 X (cm) x (em) X (cm) X (cm)
51074} | 6-10‘4_ ——— ] 10—
Eol £ (b) 4104 — 1 410 . . .
s = | - | Dynamics of the beam in the vicinity of 6t
1t 21074} g 5104 )
5107 e o | o " | order resonance for different beam
R P I S ER| T distributions in the lattice with p,= 86° : (a)
e < (om 21074 | -2t water bag, p = 58° (b) parabolic, p = 54° (c)
Dynamics of the beam with emittance (a) €/ g,= 410 41074 Gaussian, p = 38° . Numbers indicate
0.5(b) &/ &u= 0.6. Numbers indicate FODO period. 61025 =04 02 00 02 04 06 °19°05 54 02 00 02 04 06 FODO period.
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