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Abstract
The next generation of beam applications will require high-
intensity beams with unprecedented control. For the new system 
designs, simulations that model collective effects must achieve 
greater accuracies and scales than conventional methods allow. 
The fast multipole method is a strong candidate for modeling 
collective effects due to its linear scaling. It is well known the 
boundary effects become important for such intense beams. We 
implemented a constant element fast boundary element method 
(FMBEM) [2] as our first step in studying the boundary effects. To 
reduce the number of elements and discretization error, our next 
step is to allow for curvilinear elements. In this paper, we will 
present our study on a quadratic and a cubic parametric method 
to model the surface.

Boundary Integral Equations
Equation 1: Discretized double layer potential for Dirichlet BC

Equation 2: Discretized single layer field for Neumann BC
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Conclusion
We evaluated the quadratic parametric patch in [3] and the 
cubic patch in [4] as options for higher order discretization. 
Because we chose the well-conditioned double layer 
potential and single layer field integral equations, it is 
essential to accurately describe the normals across the 
structure's surface. We showed the quadratic patch gives 
adequate accuracy for large elements or small M. However, 
the truncated cubic patch needs to be studied further. We 
lose an essential interpolation property in the higher order 
terms, greatly reducing the patch quality. The runtime is 
mainly dominated by the integration, which we may 
improve using differential algebraic methods. Our next steps 
will be to allow for discontinuities such as edges or corners 
and decide whether element order >3 will be necessary for 
our purposes.

Equation 3: Quadratic parametric patch equations [3]

Equation 4: Cubic parametric patch equations [4]

Figure 1: Parametric element in (u,v) with x1 = x(0,0), x2 = 
x(1,0), x3 = x(0,1) and corresponding normals. 

Figure 2a: Comparison of 
quadratic patch (blue) on spherical 
triangle (green).

Figure 2b: Comparison of 
constructed cubic patch (blue) and 
its 3rd order Taylor expansion (red) 
on spherical triangle (green).

Vertices (8.93, 4.49, 0.27)
(3.08, 6.60, 6.85)
(8.63, 0.54, 5.02)

Center (7.75, 4.37, 4.56)
Radius 10
Area 28.970

Table 1: Spherical Triangle Parameters

Figure 3a: Standard deviation of difference in centroid (X) 
vs. no. of elements for discretized sphere, comparing 
quadratic to truncated cubic patch. 

Figure 3b: Standard deviation of difference in unit 
normal (X) vs. no. of elements for discretized sphere. 
Error for truncated cubic patch may be due to 
distortion.

Centroid Unit 
Normal

Area

Quadratic 0.79 0.44 -0.33
Cubic 1.63 6.49 1.53
Truncated 
cubic 4.19 30.5 13.6

Table 2: Percent Errors on Large Spherical 
Triangle

Figure 4: Percent error in area vs. no. of elements of 
discretized sphere. Quadratic patch shows the best 
quality.

Figure 5a: Overall runtime vs. no. of elements. Runtime 
is dominated by integration.

Figure 5b: Breakdown of runtime for quadratic and 
truncated cubic parametrization. Significant gains can 
be made by speeding up the integration.

These formulations lead to well-conditioned systems but require accurate 
normals on all M elements. The curvilinear parametrization must 
reproduce the normal vectors to an acceptable tolerance.

Vertices
x1, x2, x3

Normals
n1, n2, n3

3rd order Taylor expansion of constructed cubic 
polynomial introduces error in the area and loses 
its interpolating property. The unit normal error is  
inconclusive due to surface distortion.


