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SCHARGEV 1.0

The space charge (SC) is known to be one of the major limitations for the col-
lective transverse beam stability. When space charge is strong (SSC), i.e. space
charge tune shift � synchrotron tune Qs, the problem allows an exact analytical
solution. For that practically important case we present a fast and effective Vlasov
solver SCHARGEV 1.0 (Space CHARGE Vlasov) which calculates a complete eigen-
system (spatial shapes of modes and frequency spectra) and therefore provides
the growth rates and the thresholds of instabilities. SCHARGEV 1.0 includes driv-
ing and detuning wake forces, and, any feedback system (damper). In the next
version we will include coupled bunch interaction and Landau damping. Numeri-
cal examples for FermiLab Recycler and CERN SPS are presented.

1. Strong Space Charge Theory [1–3]

SSC harmonics for a bunch with longitudinal distribution function f (τ, v), where τ
is measured in radians, satisfy
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ρ(τ ) — average square of particle longitudinal velocity

The modified dynamic equation including the wake and the damper is
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where the operators of wake forces are defined in terms of driving and detuning
wakes, and damper is defined through the pickup P (τ ) and kicker K(τ ) functions
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r0 — classical radius of the beam particle
R0 — average accelerator ring radius
Nb — number of particles per bunch
Qβ — bare betatron tune
ζ = −ξ/η — where ξ is chromaticity and η = γ−2t − γ−2 is slippage factor
g and ψ — dimensionless gain and damper’s phase respectively

Expansion over SSC harmonics Yk(τ ) =
∑∞
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2.1 SSC Harmonics
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Longitudinal phase-space models: Gaussian and Hoffman-Pedersen distributions
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Line density ρ(τ ) and average square of the particle longitudinal velocity u2(τ )
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Eigenproblems for SSC harmonics (τ in units of [a], ν in units of [Q2

s/Qeff(0)])
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k 0 1 2 3 4 5

ν(G)
k 0 1.342 4.325 8.898 15.053 22.787
ν(HP)
k 0 1.156 3.591 7.271 12.191 18.347

2.2 Bunch Dipole Moments and Flat Bunch-by-Bunch Damper
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Dipole moments characterize contribution of the specific harmonic to the motion
of a total center of mass. As functions of head-tail phase they are

Ik(ζ) =

∫ ∞
−∞

ρ(τ )Yk(τ ) e
i ζ τ d τ I∗k(ζ) = Ik(−ζ) = (−1)kIk(ζ)

When damper sees the center of mass of an individual bunch and applies a dipole
kick uniformly along its length, it can be taken into account as a matrix of direct
product of dipole moments

Ĝlm =

∫ ∞
−∞

∫ ∞
−∞

d τ dσ ρ(τ )ρ(σ)Yl(τ )Ym(σ) e
i ζ(τ−σ) = Il(ζ)I

∗
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2.3 Wake Forces

SCHARGEV’s default library includes resistive wall and broad-band resonator wake
fields, and, model constant and oscillating wakes.

Negative wakes:

Resistive wall

Constant
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Arbitrary wake field can be used for construction of matrix elements

Ŵlm(ζ) = i (−1)m+1

∫ ∞
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Z⊥(ω − ζ)Il(ω)Im(ω)
dω
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∫ ∞
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F (τ )ρ(τ )Yl(τ )Ym(τ ) dτ, where

F (τ ) =

∫ ∞
τ

D(τ − σ) ρ(σ) dσ — is the quadrupole wake field along the bunch

Z⊥(ω) = i

∫ ∞
−∞

W (τ )e−i ω τ dτ — is the transverse impedance.

3. Applications

Without damper when ζ 6= 0 the beam is
unstable for all values of κ. An example
of modeling of coherent growth rates as
functions of the head-tail phase for sin-
gle parabolic bunch in CERN SPS ring is
presented to the right. It looks like one
should operate an accelerator at ζ < 0
when below the transition energy (and
ζ > 0 above the transition) in order to
minimize the most unstable growth rate.
At the same time an opposite to conven-
tional sign of chromaticity has a hidden
advantage: for small values of |ζ| the only
unstable mode is 0-th. This rather gen-
eral case gives a hope that the use of re-
sistive damper will help to stabilize the
beam since 0-th mode is visible well (see
[4] for more details).
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Left figure shows another example: sin-
gle Gaussian bunch in FNAL Recycler
(resistive wall wake). Now the only
growth rate of the most unstable mode
as a function of the head-tail phase and
gain of resistive damper is plotted. As
has been expected for 0 < ζ < 1 and
g ∼ 1 there is a “Lake of Stability” where
all modes have negative growth rates [4].
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