MAXIMUM BRIGHTNESS OF LINAC-
DRIVEN ELECTRON BEAMS IN THE
PRESENCE OF COLLECTIVE EFFECTS
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electron Iasers (FELs) and elementary particle colliders. In these facilities the charge densny is high enough to drive un-deSIrabIe coIIectlve effects
(wakefields) that may in-crease the beam emittance relative to the injection level, eventually degrading the nominal brightness. We formulate a limit on
the final electron beam bright-ness, imposed by the interplay of geometric transverse wakefield in accelerating structures and coherent synchrotron
radiation in energy dispersive regions. Numerous experimental data of VUV and X-ray FEL drivers validate our model. This is then used to show that a
normalized brightness of 1016 A/m2, promised so far by ultra-low charge beams (1-10 pC), can in fact be reached with a 100 pC charge beam in the

Italian FERMI FEL linac, with the existing machine configuration.

' PROBLEM

BRIGHTNESS (MEASUREMENT VS. THEORY):

A first hint comes from the case of a bunch subjected to dipole-like
kicks in the undulator?], e.g. from steerers or misalighed quadrupoles.

o Collective effects (Coherent Synchrotron Radiation, Geometric Transverse
®  Wakefield) "misalign” bunch slices in the transverse phase space: €,.;
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COLLECTIVE EFFECTS (Coherent Sunchrotron Radiation, Geometric
Transverse Wakefield)
Consider the uncorrelated sum of CSR kicks in magnetic compressors and GTW kicks in the linac.
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CONCL USIONS' 1) The degradation of the beam transverse projected emittance affects the FEL performance
even though the slice emittance is preserved. 2) The enlargement of the FEL power gain length due to a dilution of the

projected emittance can be counteracted by a relatively large average betatron function in the undulator line. 3) The
analytical model allows one to investigate and to optimize an accelerator layout by scanning the FEL properties vs. the

anetic compressor.
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