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Abstract 
It had become a standard practice to constrain particle's 

tune footprint while designing the storage ring lattice so 
that the tunes fit between harmful resonances that limit 
ring dynamic aperture (DA). However, in recent ultra-
bright light source design, the nonlinearities of storage 
ring lattices are much enhanced as compared with the 3rd 
generation light source one. It is becoming more and 
more difficult to keep the off-momentum tune footprint 
confined and even more, the solution cannot be found to 
confine off-energy tune footprint in certain cases. The 
questions have been asked whether crossing of a reso-
nance stopband from off-momentum particle will neces-
sarily lead to particle loss. In NSLS-II, we modified the 
lattice working point to mimic machine tune footprint 
crossing half integer with beam synchrotron oscillation 
excitation and demonstrated that beam can cross a reso-
nance without loss with control of stopband width and 
high order chromaticity. 

INTRODUCTION 
It had become a standard practice to constrain the parti-

cle’s tune footprint while designing storage ring lattice so 
that the particle tunes fit between harmful resonances that 
limit ring dynamic aperture (DA) [1]. This approach, 
known as “tune confinement”, puts tight limits on the 
magnitude of the tune shifts with amplitude and with 
momentum. The latter requires labor-intensive optimiza-
tion of the off-momentum DA and the corresponding tune 
footprint for the large momentum deviations to achieve 
reasonable lifetime.  

As nonlinearities of the modern ring lattices are much 
enhanced as compared with the previous generation syn-
chrotrons, it is becoming more and more difficult to keep 
the off-momentum tune footprint confined [2, 3]. In cer-
tain cases when the lattice solution with the confined off-
momentum tune footprint cannot be found, one may ask 
whether the crossing of a resonance stopband from an off-
momentum particle leads to a beam loss.  

Recently modern synchrotrons advanced to Multi-Bend 
Achromat lattices featuring small dispersion and low beta 
functions, and, as a result, high nonlinearity of the particle 
motion. In certain cases, the tune spread for on-energy 
beam was successfully minimized, but the off-momentum 
tunes swing across the major resonances. Surprisingly, 
the tracking result does not show particle loss. Authors of 
[2] explained this phenomenon by rapid transition 
through the stopband together with substantial tune shifts 

with amplitude that help to drive particles off the reso-
nance during the transition. Results of our studies pre-
sented in the paper indicate that this explanation is ade-
quate.  

Significance of the finding from the analysis presented 
in [2] advances the modern lattice design beyond the 
principles of the “tune confinement”, while posing an 
important question: under which conditions does the 
chromatic tune footprint not need to be confined? In 
NSLS-II, we modified the lattice working point to mimic 
machine tune footprint crossing half integer with beam 
synchrotron oscillation excitation and demonstrated that 
beam can cross a resonance without loss with control of 
stopband width and high order chromaticity. 

DYNAMICS OF THE PARTICLE CROSS-
ING A STATIC RESONANCE STOPBAND 

We will consider a storage ring model with large chro-
matic tune shift with momentum deviation =p/p up to 
the second order as: (ߜ)ߥ = ଴ߥ + ߜଵߦ + ଶߜଶߦ +  (1)    ,(ଷߜ)ܱ
where 1 and 2 are linear and 2nd order chromaticities. In 
the following we constrain our analysis to the 2-
dimensional case of y and  . For our experiments we 
maximized the 2nd order chromaticity of the lattice, so 
that 1y=+1 and 2y=+300 (similar to [2, 3]) by changing 
ring sextupoles while maintaining small tune shifts with 
amplitude.  

Next we assume that the particle energy oscillates with 
the maximum deviation 0 and this synchrotron oscilla-
tion for simplicity is taken as (ݐ)ߜ = ଴ߜ sin(2ߥߨ௦݊), 
where ߥ௦ is the synchrotron tune and n is the number of 
turns around the ring. A cartoon illustrating the problem 
under consideration is shown in the plot of Fig. 1. As one 
can see, the betatron tune of a longitudinally oscillating 
particle crosses the resonance =R, which is not infinite-
ly thin in presence of quadrupole errors. The resonance is 
characterized by a stopband with the width R, which is 
heuristically defined as the boundary of the tune range 

where the peak beta-beat Δߚ/ߚ = ఉିఉబఉబ  reaches 100% [4]. 

Here ߚ଴ is the reference beta function calculated from the 
unperturbed lattice model, and ߚ is the measured beta 
function obtained from coherent beam oscillations excited 
by a pulse kick and measured by beam position monitors 
distributed around the ring [5].  

We define R= (R) as the value of energy deviation 
where the particle’s tune crosses the resonance R.  The 
energy boundaries corresponding to the resonance stop-
band R are (neglecting the contribution from 1):  
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ோߜ ± Δߜோ2 = ඨ(ߥோ − (଴ߥ ± ଶߦோ/2ߥ∆  

For calculating the number of turns the particle will 
take to cross the stopband we get:  Δ݊ோ = ቀasin	൬ቀߜோ − ୼ఋೃଶ ቁ ଴ିߜ ଵ൰ − asin	൬ቀߜோ +୼ఋೃଶ ቁ ଴ିߜ ଵ൰	ቁ ଴ߜ ௦, whenߥߨ2/ > ோߜ + ୼ఋೃଶ    Δ݊ோ = acos	൬ቀߜோ − ୼ఋೃଶ ቁ ଴ିߜ ଵ൰ ଴ߜ ௦, whenߥߨ/ ≤ ோߜ + ୼ఋೃଶ  

 
Figure 1: Cartoon of particle executing synchrotron oscil-
lations with amplitude 0 and crossing resonance at R 
with the stopband width of R. The lower plot refers to 
the energy deviation versus the RF phase (t) of the parti-
cle executing synchrotron oscillations. 

CONTROLLING THE RESONANCE 
STOPBAND WIDTH 

Quadrupole imperfections of the linear lattice lead to a 
betatron tune shift together with forming a finite band-
width of half-integer resonances on the tune diagram. The 
tune shift caused by the quadrupole errors and the corre-
sponding stopband width are determined by the ampli-
tudes of zeroth and second Fourier harmonics of the 
quadrupole perturbations around the machine: 

 Δߥ௧ = ଵସగ ∑ ௤௤(ܮΔ݇ଵ)௤ߚ   

ோߥ∆  = ଵଶగ |∑ ௤݁ିଶ௜ఔథ೜௤(ܮΔ݇ଵ)௤ߚ |  

where q runs over the lattice quadrupoles, ߚ and  are 
betatron amplitude and phase and Δ݇ଵܮ = Δܤᇱ(ߩܤ)/ܮ is 
the perturbed quadrupole focusing strength.  

The way to control the resonance stopband width ∆ߥோ 
is to act on the 2nd harmonic of (Δ݇ଵܮ)௤ while maintain-
ing the 0th harmonic caused by the same (Δ݇ଵܮ)௤equal to 
zero. Methods of minimizing the stopband width were 
presented in [6].  

In our experiments we characterized the resonance 
stopband at NSLS-II using the following approach. We 
moved the vertical tune in the vicinity of resonance 
y=16.5 and measured stopband width by measuring the 
beta-beat (Fig. 2). Then we changed ring quadrupoles to 
move the tune across ½ resonance while maintaining the 
stopband width constant and measured beta beat at every 

step. Next we repeated the scan across the resonance 
starting by changing beam energy by shifting the RF 
frequency, which changed the energy and, in turn, the 
vertical tune due to the high chromaticity. We character-
ized the resonance stopband by the two tune scans de-
scribed above, resulting in the measured ∆ߥோ of 0.016. 

 
Figure 2: measurement of the ½ resonance stopband 
width R at NSLS-II, the scan of quadrupole gradients (Δ݇ଵܮ)௤ (blue points) and the scan of RF frequency fRF 

(red points) and their fits.   

To increase the stopband width we selected Nq=17 
quadrupoles separated by n + /2 in betatron phase 
advance and changed their strength by (Δ݇ଵܮ)௤ yielding 

the increase in the stopband width of 
ଵଶగ ∑ ௤ே೜௤ୀଵ(ܮΔ݇ଵ)௤ߚ .  

CONCEPT OF THE EXPERIMENT 
We moved the tune ν୷ to a proximity of half integer 

resonance located at 16.5 and excited beam vertical beta-
tron oscillations with transverse pulsed kicker (pinger). 
Turn-by-turn (TBT) beam transverse positions as well as 
beam relative intensity were measured with beam position 
monitors (BPMs). The vertical TBT data showed a modu-
lated betatron oscillations, which provided a convenient 
tool for independent measurement of the detuning  and ∆ߥோ, together with well-controlled initial conditions. 
Rapidly changing the RF phase at some delay with re-
spect to the pinger pulse induced beam energy oscillation 
large enough to cross the resonance stopband.  

Beam TBT energy oscillation was retrieved from BPMs 
horizontal data located in dispersion region. We measured 
the first and second order dispersion and chromaticity by 
scanning RF frequency, which provided the necessary 
calibration of the energy and tune oscillations.  

In our experiments we benefited from the small emit-
tance and energy spread of the NSLS-II beam [7], which 
enabled us to study betatron motion of the whole beam as 
a single particle. Indeed the transverse and longitudinal 
pinger amplitudes (=200 µrad and 0=1.5%) exceeded 
the natural beam divergence (1.5 µrad) and the energy 
spread (0.05%) by the ratio of about a hundred. The beam 
decoherence and subsequent filamentation, which masked 
the TBT BPM signals of the coherent particle motion, 
become significant a large fraction of the first synchrotron 
oscillation later.  
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Specifically for this experiment, to modulate the off-
energy tune, we developed a method of rapid excitation of 
coherent beam energy oscillations (“RF jump” or “RF 
pinger”, [8]). The LLRF controller [9] was modified by 
adding an external timing trigger to control the phase 
transient.  

The RF pinger timing was aligned with other timing-
driven subsystems, such as transverse pinger and BPMs. 
The timing delay for the RF pinger trigger was synchro-
nized with BPM sum signal so that RF pinger start is 
delayed by 100 turns relative to SR BPMs to monitor 
beam energy oscillations. Thus three planes pingers can 
be excited independently or simultaneously in any com-
bination. 

EXPERIMENTAL RESULTS 
In the experiment, we stored a few mA beam, switched 

to the highly chromatic lattice and then moved betatron 
tune to near half-integer (0~16.47) resonance by control-
ling non-dispersive quadrupoles.  

The beta-beat along the ring at different tunes was re-
trieved from BPM TBT data to measure the stopband 
width. The beta beat for the nominal lattice was corrected 
to ~3% with stopband width at 0.016. We called these 
experimental conditions the “Small stopband” scenario.  
With the same RF jump and transverse pinger settings we 
designed another experimental scenario in which the 
harmonic quadrupole strength was adjusted to expand the 
stopband width from 0.016 to 0.038, so that the beam 
tune stays within the stopband much longer during the RF 
jump. We called these experimental conditions the “Large 
stopband” scenario. 

The measurement results are shown in Fig. 3. The en-
ergy oscillation amplitude is about +/-1.4% (peak to 
peak). When the tune approaches the half integer reso-
nance, y plane motion starts to show behavior that is typi-
cal for parametric resonance, i.e. modulation at the detun-
ing frequency . 

 
Figure 3: Turn by turn beam parameters (upper plot: cal-
culated y-tunes with stopband in shadow area, lower plot: 
BPM measured turn-by-turn y-position in left axis and 
normalized beam intensity in right axis) during RF phase 
jump at several initial tunes. Left plot corresponds to the 
“Small stopband” and the right plot shows the “Large 
stopband” cases.  

It is clear that when the beam is passing through the 
“Small stopband” we do not observe particle loss. We 
estimate that the beam takes a minimum of about 7 turns 
to cross the resonance for the stopband in this case. In the 
“Large stopband” scenario, the beam is moving through 
the resonance for about 40 turns resulting in the particles 
loss. The losses then repeat every following synchrotron 
oscillation. We estimate the maximum number of turns 
that the beam can spend within the “Small stopband” as 
25 and that for the “Large stopband” as 49. The amplitude 
growth factor for few of our experiments and found an 
approximate agreement with the corresponding measure-
ments: a factor of 1.5~2.5 for the “Small stopband” 

SUMMARY  
We carried out a study focused on a new non-standard 

approach in the lattice design for circular accelerators. We 
have shown that it may be unnecessary to confine the 
chromatic tune footprint between the resonance stop-
bands. The storage rings with a large chromatic tune 
swing can successfully reach large momentum aperture 
provided that two conditions are satisfied. The first condi-
tion states that the resonance stopbands need to be cor-
rected well by manufacturing and aligning of magnets 
with small residual field errors and accurate cancellation 
of the harmful error harmonics that otherwise increase the 
stopband width. The other condition is in maintaining 
large magnitude of high order chromaticity. Combination 
of the two conditions above leads to a rapid crossing of 
the resonance stopband, which does not cause loss of the 
particles as demonstrated by our experiments.  
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