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Abstract 
The Hamiltonian, which was composed of coasting, 

synchrotron and betatron motions, clarified the synchro-
betatron resonant coupling mechanism in a storage ring. 
The equation for the synchrotron motion was also 
obtained from the Hamiltonian. It shows that the so-called 
synchrotron oscillation is an oscillation around the 
revolution frequency as well as of the kinetic energy of 
the on-momentum particle. The detectable synchrotron 
oscillation is a horizontal oscillation on the laboratory 
frame. 

INTRODUCTION 
The Hamiltonian, which was composed of coasting, 

synchrotron and betatron motions, was derived to explain 
the observed horizontal betatron tune jump near the 
synchro-betatron resonant coupling point[1]. We discuss 
about the so-called synchrotron oscillation related to the 
Doppler effect. We show that the synchrotron oscillation 
derived from the Hamiltonian is longitudinal as well as 
horizontal oscillations. 

HAMILTONIAN FOR THE  
ORBITING PARTICLE 

We assume that an on-momentum particle of mass m 

and momentum 0p  is circling (without oscillating motion) 

the reference closed orbit of the average radius R with 

velocity v . 0E  is the total energy and K is the kinematic 

energy of the on-momentum particle. We have the 
following relations: 
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Keeping up to the 2nd order to describe an orbiting 
particle of coasting, betatron and synchrotron motions, the 
Hamiltonian composed of three motions is given as 
follows from Eq.(21) of the reference 1: 
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where S  is the (rationalized) fractional deviation of the 

kinetic energy caused by the so-called synchrotron 

oscillation and C is the (rationalized) fractional deviation 

of the kinetic energy caused by the dispersion. Both 

S and C are normalized by 2

0E . The coasting motion 

consists of the 0th (on-momentum particle) and 1st 

( S and C )order effects.   is the phase slip factor. We 

assume the strong focusing case  0 1   .   is the 

phase of the rf wave. Around the off-momentum closed 

orbit, x is horizontal coordinate and xp  is horizontal 

momentum of the orbiting particle. We also have 

 0D

x
p

D D

R R

p
x


  , and S S D    . D is the 

dispersion and 
S  is the phase angle for synchronous 

particle with respect to the rf cavity voltage V. In the 
following argument, we neglect the betatron oscillation. 

OSCILLATION AROUND THE 
REVOLUTION FREQENCY 

We obtain the following equation for the so-called 
synchrotron oscillation from Eqs.(26) and (27) of the 
reference 1: 

         0 0
ˆ cosS C                              (2) 
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where 0
1

C     ,   is the orbit angle (
s

R
  ), 0  

is the orbit angle at the injection point. 0  is the 

revolution frequency, s is the synchrotron frequency, 

  is the synchrotron tune, ̂  is the amplitude of 

oscillation and C  is an integration constant. 

Generally 1C   and we can choose ˆ
C   at 

0  . We can neglect this term. Then we consider only 

the reference closed orbit. Now the coasting  motion 
consists of the on-momentum particle plus the effect 

of S . From Eq.(2) 

              0
1ˆ cosS C                         (4) 

Neglecting the integration constant 0C  ,  

            0
ˆ cos 1S          .                 (5) 
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We have the following relation[2]: 

                                 
0
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  .                              (6)    
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The last term of RHS of Eq.(7) represents the particle 

circling with 0 . This term shows up because of the 1st 

order term of the coasting motion S in Eq.(1). The 

synchrotron oscillation, which is an oscillation around the 

revolution frequency 0 , occurs on the mechanical frame 

of the circling particle. Then detected synchrotron tunes 
are expected to be changed on the laboratory frame by the 
Doppler effect. 
 

 
 

Figure 1: An image of the spectrum analyzer taken 

for 12 6C  (400MeV/u) beam of a heavy ion synchrotron. 
Two symmetrical sidebands (±0.185kHz) around the 
revolution frequency (3.378096MHz) was clearly 
recorded. 

EXPERIMENTAL RESULTS 
For low energy particles (non-relativistic), recorded 

synchrotron frequencies  are found symmetrically as 
two sidebands around the revolution frequency as follows 

               0non relativistic s     ,                            (8) 

where non relativistic  for the oscillation moving toward the 

observer and non relativistic  for the oscillation moving away 

from the observer. For relativistic particles, however, the 
synchrotron frequencies should be found non-

symmetrically around the revolution frequency by the 
Doppler effect as follows[3]: 

               0 1relativistic s        ,                (9-a) 

               0 1relativistic s        .                (9-b)  

where relativistic for the oscillation moving toward the 

observer and relativistic  for the oscillation moving away 

from the observer.  
Figure 1 is an image of the spectrum analyzer 

(Tektronix RSA 3303B) taken for 12 6C  (400MeV/u) 
beam of a heavy ion synchrotron at Gunma university 
heavy ion medical centre[4]. Two symmetrical sidebands 
(±0.185kHz) around the revolution frequency 
(3.378096MHz) was clearly recorded. The image was 
taken by the electrostatic beam positioning monitor, of 
which plate was used as an antenna. The antenna acted as 
the observer. The detected synchrotron tune was 
0.000055. No Doppler effect was confirmed. 

PHENOMENOLOGICAL ANALYSIS 
Since no Doppler effect was confirmed, the synchrotron 

oscillation occurs not on the frame of the circling particle, 
but on the laboratory frame. Eq.(7) should turn to be 

                 0cosˆ       .                  (10) 

However, small frequency oscillation without circling 
motion is meaningless as the synchrotron oscillation. To 
explain physical reason why no Doppler was confirmed, 
we go back to Eq.(4). 
Following the definition of (rationalized) fractional 
deviation  of  reference 1, we define as follows: 
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Neglecting the integration constant 0C  , we rewrite 
Eq.(4) as follows,  

                0
sinˆ

SE E E      .          (11) 

where SE is the kinetic energy of the oscillation and 

Ê  is its amplitude. 

In Eq. (11), E is the centre energy of the oscillation. 

We call E the oscillation centre. To find out a role of the 

oscillation centre, we neglect oscillating motions as 1st 
order effect and consider only motion of the oscillation 
centre. Let's locates a non-oscillating imaginary particle 

of mass m at the oscillation centre. E represents the 

kinetic energy of the imaginary particle against the 

laboratory frame. We evaluate the fictitious velocity Cu of 

the oscillation centre. Define the momentum ip and the 

total energy iE of an imaginary particle as follows:  

    2
222

i i
mcE p c  , i C Cp m u  and 2

i
E E mc  . 
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We have  
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When the oscillation centre is on the on-momentum 

particle ( C  ), we define C  .  

From Eq.(12), we have 

  
1

1

2 1
1C




 

 
 

    .    (13) 

For 0  , following relations are obtained: 

1) 0  ,  the oscillation centre moves with

Cu c . 

2) 
1

10


    , the oscillation centre moves faster 

than the on-momentum particle. 

3)
1

1C 


     ,  the oscillation centre is on the 

on-momentum particle. 

4) 
1

1


   , the oscillation centre moves slower than 

the on-momentum particle. 
5)   , the oscillation centre locates on the lab

frame  0Cu  . 

Generally it is very difficult to find appropriate values of 

  (assuming  0 1   ), which does not satisfy

conditions 1), 3), 4) and 5). The condition 2) should be 
satisfied, but it says that the velocity of the oscillation 
centre is faster than the velocity of the on-momentum 
particle. This result is unrealistic.  
 Since Eq.(11) is equivalent to Eq.(7), the imaginary 

particle, which circles with 0 , is on the kinetic frame of 

the on-momentum particle. Accordingly the imaginary 
particle, which locates on the oscillation centre, should 
corresponds to the on-momentum particle. 
We had to choose an appropriate integration constant 

0C   in Eq.(4) and redefine E  as follows:

 2

0

1E

E
C

      (14) 

As E equals to the kinetic energy of   21K mc  ,

 1
1

1 1C



  

 
  .      (15) 

CONSIDERATION 
  The so-called synchrotron oscillation is the oscillation of 
the revolution frequency and the oscillation of the kinetic 
energy of the on-momentum particle. Two pictures are 
equivalent but represent oscillations of two different 

directions. Since the first one occurs in the orbital 
direction, it is an oscillation in the longitudinal direction. 
We call it the longitudinal oscillation. We define the 

longitudinal constant 0C C  , from Eq.(7) 

  0 0cosˆ          ,             (16)  

where  is a small value on the mechanical frame of 
the circling particle. 

For the second one, the radius of the circling particle 
also oscillates around the reference closed orbit when its 
kinetic energy oscillates. It is an oscillation in the 
horizontal direction. We call it the horizontal oscillation. 
We define the horizontal constant 

 1
1

1 1
hC C


 

 
 

   , from Eq.(11) 

       0

2sin 1ˆ
S mcE E         ,    (17) 

where SE  is a small value on the mechanical frame of 

the on-momentum particle. hC erases  
1
 term in Eq.(4). 

Now influences directory the oscillation through Eq.(3) 

but does not influence indirectly the oscillation through 
the mechanical frame. 

In the laboratory frame, the velocity of the circling 
particle is changed periodically but very slowly in the 
longitudinal oscillation. In practical situation, however, 
the particle revolves many times (more than 104 times/sec 
for Fig. 1 case) for one longitudinal oscillation and no 
synchrotron tune in that direction is detectable in the 
laboratory frame. It is reasonable that the Doppler effect 
in the longitudinal direction was not recorded in Fig. 1. 
This result also demonstrates that the horizontal 
oscillation is not moving with the circling particle. It 
occurs on the laboratory frame. We conclude that the 
synchrotron oscillation is a horizontal oscillation on the 
laboratory frame and the synchrotron tune is detectable 
only in the horizontal direction. 

One of the author reported that energy exchange 
between the synchrotron and the betatron oscillations was 
possible[1]. The betatron oscillation is also a horizontal 
oscillation. It is well know that an electrostatic kicker is 
utilized to excite betatron oscillations. Therefore, on the 
same way, we may utilize a kicker to de-excite 
synchrotron oscillations slowly so that particles outside 
the bucket are pushed back into the bucket to reduce 
loosing particles. 
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