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Abstract
We have extended a lattice independent code to integrate

the Thomas-BMT equation over 2 hours of beam time in
the presence of two orthogonal Siberian snakes. In tan-
dem to this we have recast the Thomas-BMT equation in
the presences of longitudinal dynamics, into the paramet-
ric resonance formalism recently developed to understand
overlapping spin resonances [1]

INTRODUCTION
One of the important factors effecting the net polarization

integrated over during RHIC store is the polarization life-
time. This value has varied between a low of about 0.5%
per hour to a high of 2% per hour. However we do not yet
possess a good theory to explain these losses, neither has the
community been able to simulate these losses. For example
direct spin tracking to simulate 1 hour of beam time would
take 300 million turns in RHIC. Even if we could do 100K
turns in 1 hour (which is about 4 times faster than what I
have observed) it would take 125 days to do this. Even if we
would allocate the time we don’t have the compute resources
to do this for any kind of realistic distribution.
So in leu of this, we have turned to lattice independent

spin tracking methods developed previously [2]. This ap-
proach involves integrating the T-BMT equation using only
several spin resonances with a unitary 4th order Gaussian
quadrature integrator. In this paper we present the results
from an extension of this integrator to handle longitudinal
dynamics.

SPIN DYNAMICS REVIEW
The dynamics of the spin vector of a charged particle

with q charge in the laboratory frame is described by the
Thomas-BMT equation,

d~S
dt
=

q
γm

~S ×
(
(1 + Gγ) ~B⊥ + (1 + G) ~B‖

)
, (1)

~S is the spin vector of a particle in the rest frame, and ~B⊥ and
~B‖ are defined in the laboratory rest frame with respect to
the particle’s velocity. G = g−2

2 is the anomalous magnetic
moment coefficient, and γmc2 is the energy of the particle.
Here we neglect the electric fields. Following a standard
derivation (see for example [1] ) the T-BMT equation can
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be recast in a spinor form:

dΨ
dθ
= −

i
2

(
f3 −ξ
ξ∗ − f3

)
Ψ. (2)

Where ξ (θ) = F1 − iF2 and f3 = (1 + F3) with,

F1 = −ρz′′(1 + Gγ)

F2 = (1 + Gγ)z′ − ρ(1 + G)
(

z
ρ

) ′
F3 = −(1 + Gγ) + (1 + Gγ)ρx ′′. (3)

Here, θ is the orbital angle that remains constant outside the
bends. Although the spinor function Ψ is similar in form
to the quantum-mechanical-state function, in this case ~S
is a classical vector. However, as in the former case, this
two-component spinor is defined,

Ψ =

(
u
d

)
. (4)

u and d are complex numbers representing the up- and down-
components. The components of the spin vector become

S1 = u∗d + ud∗

S2 = −i(u∗d − ud∗)
S3 = |u|2 − |d |2. (5)

Because H = (~σ · ~n) is hermitian,

|~S | = |u|2 + |d |2 = Ψ†Ψ (6)

and the magnitude of the spin-vector remains constant. We
chose the normalization condition for the spinor function to
be Ψ†Ψ = 1.
When evaluating the cumulative effect of the lattice on

the spin, the standard approach is to expand F1 − iF2 into a
Fourier series:

ξ (θ) = F1 − iF2 =
∑
K

εKe−iKθ (7)

wherein the Fourier coefficient or resonance strength εK is
given by the following:

εK = −
1

2π

∮ [
(1 + Gγ)(ρz′′ + iz′)−

iρ(1 + G)(
z
ρ

)′
]

eiKθdθ. (8)

Here, K is the resonance spin tune. Also usually the
(1+Gγ)ρx ′′ term is ignored to first order. Since θ is constant
in a region without dipoles, it is usually clearer to express
the resonance integral in terms of s:

εK = −
1

2π

∮ [
(1 + Gγ)(z′′ +

iz′

ρ
)−

i(1 + G)(
z
ρ

)′
]

eiKθ (s)ds. (9)
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The amount of depolarization caused by acceleration
through any given singular spin resonance can be evaluated
using the Froissart-Stora formula [3]

Pf

Pi
= 2e−(π |εK |2/2α) − 1, (10)

where„

α =
1

ωrev

dνs
dt

(11)

is the spin tune crossing rate dvided by the angular revolution
frequency ωrev , and

Pf

Pi
is the ratio of initial vertical to final

vertical polarization. For a flat orbit in a constant verical
field α ≈ d(Gγ)/dθ. The Froissart-Stora formula represents
a solution to the T-BMT equation for the special case of
crossing an isolated spin resonance.

LATTICE INDEPENDENT INTEGRATION
We have previously developed a code to integrate the

2D spinor form of the Thomas-BMT equation (Eq. (2)) [2]
where in our case the f3 term is set to Gγ neglecting the
(1 + Gγ)ρx ′′ term as mentioned above.
Using a 4th order Magnus Gaussian quadrature integrator

described in [4] we can integrate Eq. (2) for an arbitrary ξ (θ).
In this code the effect of snakes and rotators are handled
separately and are added into the lattice as thin spin kicks.
However as long as the system was held away from a

low order snake resonance, integrating this system with any
combination of intrinsic and imperfection resonances over
600 million turns showed no mechanism for polarization
loss.
So we introduced the effect of longitudinal motion into

our system. To understand effect of longitudinal motion
on spin we need to first understand Its effect on transverse
motion. In the simplest case a single particle’s transverse
motion can be characterized by

d2Y (s)
ds2 + ω2

β/c
2Y (s) = 0. (12)

Here Y is the transverse position of the particle, s the
longitudinal coordinate and ωβ gives the angular betatron
frequency, which is just the angular revolution frequency
ω0 times Q the betatron tune. Solutions give transverse
harmonic motion oscillating with the betatron tune Q each
revolution. However if the particle resides in a rf-bucket one
must consider its longitudinal motion inside of the bucket
as well and equation of motions become,

d2Y (s, δ, zL )
ds2 + ω2

β (δ)/c2Y (s, δ, zL ) = 0. (13)

Here zL defines the longitudinal position relative to the
center of the rf-bucket, and δ = ∆p/p the relativemomentum
difference from the "on momentum" particle. If we expand
the betatron frequency to first order in δ we obtain.

ωβ (δ) = ω0Q + ξyω0δ. (14)

Here ξy = dQ
dδ is called the chromaticity. We can also

approximate the longitudinal motion inside the rf-bucket
using,

δ(s) =
−ωs

ηc
r sin(ωss/c + φ)

zL (s) = r cos(ωss/c + φ). (15)

Here ωs = ω0Qs known as the synchrotron angular fre-
quency is the angular frequency of the longitudinal mo-
tion, and φ is the phase of the synchrotron motion, η the
phase-slip factor defined as the fractional change of the
revolution period per unit of δ. We have also defined
r2 = zL (s)2 + ( ηcωs

)2δ(s)2 .
Following [5], an approximate solution to Eq. (13) has

the form,

Y (s, δ, zL ) ≈ Ae±iΦ(s,δ,zL ) (16)

where A is the constant amplitude and,

Φ(s, δ, zL ) =
∫ s

0
ds′(ω0Q/c + ω0ξyδ(s)/c)

Φ(s, δ, zL ) = ω0Qs/c+
ξyω0

ηc
(zL (s) − zL (0))

Φ(s, δ, zL ) = ω0Qs/c+
ξyω0zL (0)

ηc
(cos(ωss/c) − 1)+

Cyδ(0)
Qs

sin(ωss/c). (17)

Here we recast the phase in terms of initial zL (0) and
δ(0) using the transformation from the frame rotating with
the synchrotron frequency,

(
zL (s)
δ(s)

)
=

(
cos(ωss/c) ηc

ωs
sin(ωss/c)

−
ωs

ηc sin(ωss/c) cos(ωss/c)

) (
zL (0)
δ(0)

)
.

(18)
We can now model the effect of longitudinal motion via a
phase modulation applied to the betatron phase term which
appears in ξ (s) as,∑

K

εKe−iKθ+i
ξyω0τ0

η (1−cos(ωs s/c)) . (19)

Here we have set zL (0) = τ0c. We choose the initial
δ(0) = 0 since that will only alter the constant initial phase
and shouldn’t contribute to the dynamics which drive polar-
ization lifetime.

In addition to the phase effect there is also a direct energy
modulating effect which should modify our value for Gγ as
follows,

Gγ(s) = (Gγ0 + αθ)(1 + δ(θ)); (20)

Since we have chosen δ(0) = 0 this makes our δ(s) =
ωsτ0 sin(ωss/c)/η.
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Figure 1: Average evolution of polarization for forward and
reverse tracking for 1 hour (1 hour forward, 1 hour reverse).
Path’s are diverged initially because reverse tracking stag-
gered by one turn.

Figure 2: turn-by-turn average evolution of polarization for
different initial τ0

NUMERICAL ERROR CHECK
Since we are running our integrator over 108 turns one

important concern is the development of roundoff errors
and deviations from unitarity. Checks of unitarity found
deviations out to two hours of less than 1 × 10−8. We also
performed reverse tracking. Here we took 128 particles out
to 1 hour (2.58 turns) and then reverse tracked to recover our
starting spin values to within 5 × 10−6 (see Fig. 1)

DRIVERS OF POLARIZATION LIFETIME
As can be seen in Fig. 2 the integration of the T-BMT

equation for a single resonance with two orthogonal snakes,
over 2 hours of beam time show no observable polariza-
tion loss. The introduction of longitudinal motion however
changes this situation very dramatically. Additionally the
threshold appears to be less than 10−16sec in τ0 amplitude.
The role of the update from Eq. (20) appears negligible in
relation to the polarization lifetime. This is because omit-
ting or including the update in the simulation didn’t seem to
change or cause the onset of a polarization decay.

Figure 3: turn-by-turn average evolution of polarization for
different initial τ0 with four neighboring resonances.

If we now consider the evolution of the average spin vector
in the presence of up to four additional nearby intrinsic
resonances we see that like the single resonance case, it
is only with the introduction of longitudinal motion that a
discernable polarization lifetime appears (see Fig. 3)

If we also consider the response of the lifetime to different
factors related to longitudinal motion. We see that it is rather
insensitive. So for example we saw that with only 10−16sec
timing offset from the bucket center polarization decay sets
in. However above this changes of initial τ0, synchrotron
tune and chromaticity show little correlation with increased
decay rates (see Fig. 4).
While longitudinal dynamics seems essential to trigger

the process of polarization decay,the response to changes
in longitudinal parameters seems rather insensitive. In the
range of parameters which is reasonable for synchrotron
tune, momentum offset and chromaticity decay rates don’t
seem to change significantly.
However as you might have noticed in the top figure in

Fig. 4 polarization lifetime is very sensitive to the magnitude
of the nearby intrinsic spin resonances.

We also can see in Fig. 5 that beyond a threshold of 0.01
resonance strength, the imperfection resonance strength for
both nearby imperfections can play an important role in
driving polarization decay rates.

Using the curves similar to those shown in Fig. 4 and 5 one
can provide an estimate for the lifetime by interpolating loss
versus emittance and then integrating this over the emittance
distribution,

ρ(ε ) =
e−

ε
2ε0

2ε0

Polloss =

∫ εmax

0
dε ρ(ε ) f (ε ). (21)

Here f (ε ) is a fit the polarization loss versus emittance
curves. We found for the FY15 100 GeV lattice, lifetime
estimates of between 0.14 to 0.4% per hour for an ε0 between
10 to 30 πmm − mrad rms Normalized.
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Figure 4: Polarization deviation from stable spin direction
after 2 hours for different initial τ0 with four neighboring
resonances (top). Turn-by-turn average evolution of polariza-
tion for different initial synchrotron tune qs = 8.9×10−4 and
89.0 × 10−4 (middle). Turn-by-turn evolution for chromatic-
ity = 0.5,1,5 and 10. These are all for stored Gγ = 191.5
and vertical tune of 30.693 with four intrinsic resonances
calculated from the FY15 100 GeV pp lattice.

Figure 5: Polarization deviation from stable spin direction
after 2 hours for different initial imperfection resonances
for the Gγ = 191 (top) and for Gγ = 192. These are all
for stored Gγ = 191.5 and vertical tune of 30.693 with four
intrinsic resonances calculated from the FY15 100 GeV pp
lattice.

CONJECTURE OF MECHANISM FOR
POLARIZATION LOSSES

If we consider only a single spin resonances with syn-
chrotron motion then Eq. (24) becomes,

ξ (s) = a1e−iK1θ−iφ1+i
g0
qs

(cos(qsθ)−1), (22)

where we use ε1 = a1e−iφ1 and g0 =
ξω0τ0qs

η . Starting
from Eq. (2) we can move to the Interaction frame using the
transformation:

Ψ(θ) = e−
i
2
∫ θ

0 f3 (t)dtσ̂zΨI (θ)

ξ̂ (θ) = ξ (θ)ei
∫ θ

0 f3 (t)dt, (23)

This yields the following:

dΨ+I
dθ
=

i
2
ξ̂Ψ−I

dΨ−I
dθ
=

i
2
ξ̂∗Ψ+I . (24)

These equations can be cast into a standard 2nd order ho-
mogeneous linear differential equation with variable coeffi-
cients,

d2Ψ+I
dθ2 −

(
i f3(θ) +

ξ ′(θ)
ξ (θ)

)
dΨ+I
dθ
+
ξ (θ)ξ (θ)∗

4
Ψ
+
I = 0.

(25)

cients,

d2Ψ+I
dθ2 −

(
i f3(θ) +

ξ ′(θ)
ξ (θ)

)
dΨ+I
dθ
+
ξ (θ)ξ (θ)∗

4
Ψ
+
I = 0.

(25)

where we introduce ∆ = K0−K1 and also show the equation
for both Ψ±I . Following the approach used in [1] we can
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recast this equation as,

y±′′ + *
,
*
,

a2
1

4
+
∆2

4
+
-
−
g0
2

(
∓iqs cos(qsθ) + ∆ sin(qsθ)

)
+
g2

0
4

sin2(qsθ)+
-
y± = 0 (27)

In this case have transformed Eq. (26) using the following
standard change of variables,

β±(θ) = ±ig0 sin(qsθ) ∓ i∆

±iD(θ) =
1
2

∫ θ

dx β±(x)

y±(θ) = Ψ
±
I (θ)ei±D(θ) (28)

In the form of Eq. (27) we can see clearly that we have now an
oscillating kernel and thus an equation which has an infinite
number of parametric resonances populating the parame-
ter space where a2

1/4 + ∆
2/4 = (nqs)2/4 and n = 1, 2, 3...

.

Since we are considering polarization lifetime issues over
very large number of turns, even the very high order para-
metric resonances can potentially drive losses now where as
before the introduction of the synchrotron motion there was
no oscillating kernel and thus no mechanism for polarization
loss.

While this logic seems correct for the single resonance
model which we have outlined above. It is still unclear why
in the case of multiple overlapping spin resonances in the
absence of synchrotron motion this is not the case? We think
this might be due to cancelations of the parametric driving
resonances terms which could occur in the presence of two
orthogonal snakes. The above analysis of course didn’t in-
clude the effect of snakes. Since the intrinsic resonances
are a property of the lattice, snakes are well suited to cancel
their effects. However synchrotron motion is a property of
the RF system and thus it lacks the periodicity with respect
to the lattice which the intrinsic resonances do.
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