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Abstract 
For a high-brightness electron beam with low energy 

and high bunch charge traversing a recirculation 
beamline, coherent synchrotron radiation and space 
charge effect may result in the microbunching instability 
(MBI). Both tracking simulation and Vlasov analysis for 
an early design of Circulator Cooler Ring [1] for the 
Jefferson Lab Electron Ion Collider reveal significant 
MBI. It is envisioned these could be substantially 
suppressed by using a magnetized beam. In this work, we 
extend the existing Vlasov analysis, originally developed 
for a non-magnetized beam, to the description of transport 
of a magnetized beam including relevant collective 
effects. The new formulation will be further employed to 
confirm prediction of microbunching suppression for a 
magnetized beam transport in a recirculating machine 
design.  

INTRODUCTION 
Beam quality preservation is of general concern in 

delivering a high-brightness electron beam through a 
transport line or recirculation arc in the design of modern 
accelerators. During high-brightness beam transport, 
initial small density modulations can be converted into 
energy modulations due to short-ranged wakefields or 
high-frequency impedances. Then, the energy 
modulations can be transformed back to density 
counterparts downstream in dispersive regions. The 
density-energy conversion, if forming a positive feedback, 
can result in the enhancement of modulation amplitudes. 
This has been known as the microbunching instability 
(MBI) (see, for example, Refs. [2-4]). MBI has been one 
of the most challenging issues associated with beamline 
designs such as magnetic bunch compressor chicanes for 
free-electron lasers or linear colliders. Moreover, it also 
poses difficulties in the design of transport lines for 
recirculating or energy-recovery-linacs (ERLs). Any 
dominant source of beam performance limitations in such 
a high-brightness electron beam transport system must be 
carefully examined in order to preserve beam phase-space 
quality. Among those, we already know the longitudinal 
space charge force (LSC) and coherent synchrotron 
radiation (CSR) can, in particular, drive MBI. The LSC 
effect stems from upstream ripples on top of the 
longitudinal charge density, and can generate an energy 
modulation when the beam traverses a long section of a 
beamline. When the beam encounters bending, CSR due 
to electron coherent radiation emission inside a bend can 

have a significant effect upon further amplifying the 
induced density modulations. A typical transport line in a 
recirculated machine can have a long linac or straight 
section and a large number of bending dipoles, and thus 
can potentially incubate such density-energy conversion 
along the beamline. The successive accumulation and 
conversion mechanism between density and energy 
modulations can result in significant microbunching 
amplification. 

In the early design of the Circulator Cooler Ring (CCR) 
[1] for the Jefferson Lab Electron Ion Collider (JLEIC) 
[5], both tracking simulations [6, 7] and Vlasov analysis 
[8, 9] have shown that MBI is a serious concern for the 
CCR design. The one-turn CSR microbunching gain (to 
be defined later) is found to be up to 4000 at the 
modulation wavelength of 350 μm and is even higher 
when LSC is included. This is mainly due to the high 
bunch charge (~2 nC) and relatively low energy (~55 
MeV) of the cooling beam circulating in the CCR. 
Mitigation of MBI thus becomes an issue for a high-
brightness beam transport in recirculating machines. 
Several mitigation schemes have been proposed in the 
literature for different machine configurations and can be 
in general divided into two categories: those addressing 
the transport lattice, and those directed at the transported 
beam. For the former aspect, the optics impact of 
beamline lattice designs on MBI has been recently 
investigated [10-15]. In those beamline designs, the beam 
is transversely uncoupled, i.e. non-magnetized. For the 
latter aspect, Derbenev [16] had proposed using 
magnetized beam to improve electron cooling 
performance [17] and to mitigate collective effects such 
as space charge [18] and MBI (our primary focus in this 
paper). A magnetized beam can be generated by 
immersing the cathode in an axial magnetic field and thus 
features a nonzero angular momentum. In general, the 
magnetized beam is a transversely coupled beam. 

In the remainder of this paper, we will derive the 
equations governing microbunching for a transversely 
coupled beam. Our derivation largely follows the 
theoretical treatment by Huang and Kim [4] and Heifets, 
Stupakov, and Krinsky [3]. To characterize the general 
feature of a magnetized (or a otherwise coupled) beam, 
we use the beam sigma matrix instead of Twiss (or 
Courant-Snyder) parameters. We then apply the resultant 
integral equation to a specialized arc design for 
magnetized beam transport to a section of cooling 
solenoid. We also benchmark our developed code against 
particle tracking by ELEGANT [19]. Both simulation 
results are in good agreement. 
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THEORETICAL FORMULATION 
A convenient way to characterize a transversely 

coupled beam is to consider its moments [20]. In many 
cases, the 6-D beam phase space distribution function is 
quadratic in the phase space coordinates. For our 
discussion, we define X and X4D as 

X(s)  x,x ', y, y ',z, ;s   and X4 D (s)  x,x ', y, y ';s , 
respectively. The system Hamiltonian is assumed to have 
a quadratic form to X. Given the Hamiltonian the solution 
to the system, in the absence of collective effect, to first 
order, can be expressed as 
 X(s)  R(s)X(0)  (1) 

where R is the linear transport matrix. 
For a collection of particles, we use the phase-space 

distribution function f to describe the beam behavior. If 
the collision between particles is ignored, the evolution is 
governed by Vlasov equation. The unperturbed solution 

  
   
f X(s);s   f X(0);0   f R1(s)X(s);0  . (2) 

 The electron phase-space distribution is assumed to be 
Gaussian in (x, x’, y, y’, δ) and uniform in z 
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where 
4 D

 is the beam sigma matrix and  


4 D

 det 
4D 4  is the 4-D beam emittance.  is the 

uncorrelated relative rms energy spread and h is the chirp 
on the beam. 

Assume the beam phase space is perturbed during 
infinitesimal time duration dτ due to an energy kick dδ 
from collective effects. Ignoring  f

1
  and summing up 

this contribution over the entire trajectory gives [4] 

 f X;s   f0(X0 ) d
 f

0
(X )



d
d0

s

   . (4) 

We are interested in the microbunching development 
along a beamline; microbunching can be quantified by the 
Fourier transform of perturbed phase-space distribution 
function (or, bunching factor) 
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Our goal is to derive the governing equation for b(kz;s) 
by substituting Eqs.(3) and (5) into (4). This involves an 
integral of the form (assume initial density modulation, 

f0
( z )  1 n n0  f0
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Direct integration of the Eq. (6) becomes awkward. To 
simplify, we can diagonalize the exponent in Eq. (6). 
First, we define a set of de-coupled 4-D phase-space 
coordinates as U0  u1,u2 ,u3,u4  so that the 

transformation from X0 to U0 satisfies the following 
criterion V

4 D
1 V1  D1 where D is a diagonal matrix 

with det D1   det 
4 D
1 ,det V   1,VT  V1. After the 

coordinate transformation, the term in the exponent of Eq. 
(3) becomes 
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and the term zs in Eq. (6), 
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Now the exponent becomes de-coupled and the 
integration over U0 can be easily done. By substituting 
Eq. (4) into Eq. (5), we arrive at the governing equation 
for microbunching in terms of b(k;s), 
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where b
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where I(τ) is the peak current at s = τ, IA the Alfven 
current, γ the relativistic factor, Z(k) is the impedance per 
unit length. Landau damping is expressed as 
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
5 j

(s, )  C(s)R
5 j

(s)C( )R
5 j

( ), j  1,2,3,4,6 (12) 

C(s) is the compression factor and R
56

(  s) can be 

obtained by R(  s)  R(s)R1( ) . 

Equation (9) is a compact integral equation that governs 
the microbunching process. The quantity of particular 
interest is the microbunching gain, defined as the ratio of 
bunching factors at a certain location s to the initial 
location s = 0, 

 G(s) 
b(k

z
;s)

b
0
(k

0
;0)

. (13) 

Hereafter, we call G(s), the gain function, which is a 
function of s for a given modulation wavenumber, and 
refer to G

f
()  G(s  s

f
;  2 k

z
) as the gain 

spectrum, a function of modulation wavelength at the exit 
location of a lattice (the subscript “f” indicates the exit of 
a beamline). 

To summarize the general physical mechanism of MBI 
as described by Eqs. (9-11): a density perturbation at τ 
induces an energy modulation through the Z(k,τ), and is 
subsequently converted into density modulation at s 
through the momentum compaction function R

56
(  s) 

[4]. 

EXAMPLE 
In this section we illustrate the microbunching gain 

analyses by considering an example arc lattice for 
magnetized beam transport. Table 1 summarizes initial 
beam parameters used in our simulations. This achromatic 
arc is composed of eight cells, and each cell is constructed 
by two inward and one outward bends. The total bending 
angle is 180 degrees. Each bending dipole is designed as a 
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half-indexed [21] and combined-function dipole. The arc 
lattice serves to transport the beam, to match toward the 
downstream solenoid entrance [22], as well as to preserve 
the axial symmetry. 

Table 1: Initial Beam Parameters used in the Simulation 

Name    Value Unit 

Beam energy 55 MeV 
Initial peak bunch current 22.5 A 
4-D geometric emittance 1.11×10-7 M 
Compression factor 0.28  
Chirp 4.465  
Energy spread (uncorrelated) 1.5×10-4  

Figure 1 shows the simulation results for the arc 
example. A nonzero chirp is imposed to the beam so that 
the bunch is de-compressed when it traverses through the 
arc. The evolution of bunch current is shown in Fig. 1(a). 
The microbunching gain function, defined in Eq. (13), is 
illustrated in Fig. 1(b), for λ = 300 μm. In this figure, the 
dots are obtained from ELEGANT tracking, in which 16-
million simulation particles are used and 700 bins are set 
to ensure the convergence of the results and the minimum 
resolved modulation wavelength down to 50 μm. The 
input beam phase-space distribution for particle tracking 
is prepared according to Ref. [23]. The data 
postprocessing follows that described in Ref. [24] and for 
detailed procedures we refer to Ref. [25]. In the 
simulation, we only incorporate the free-space 1-D 
steady-state CSR effect [26, 27]. Figure 1(c) shows the 
microbunching gain spectrum, as a function of 
modulation wavelength at the exit of the arc. From Figs. 
1(b) and 1(c) we can see both our Vlasov solutions and 
tracking results agree with each other. The analysis shows 
that there is basically no gain growth along the arc. As a 
reference, Fig. 1(d) indicates the validity of 1-D CSR 
model [26] used in the simulation. The Derbenev ratio is 
defined as  

x
 2/31/3 . The ratio is assumed to be 

small when 1-D model is valid. When the ratio is no 
longer small, the transverse variation of the CSR field 
needs to be taken into account, and a 2-D CSR model is 
required [28, 29]. 

Figure 1: (a) bunch decompression along the arc; (b) gain 
function for λ = 300 μm; (c) gain spectrum; (d) Derbenev 
ratio as a function of s. Note, in the simulation results, 
only steady-state CSR is included. 

Compared to a non-magnetized beam, a general feature 
of a magnetized beam is the (much) larger transverse 
beam size because of its intrinsic angular momentum. 
This larger beam size can have a smearing effect at 
locations where R

51


x
  . In this arc example, 

R
51


x
 2 mm , much longer than the modulation 

wavelength of interest [30]. A conceptual illustration is 
shown in Fig. 2. The smearing effect is similar to that due 
to large slice energy spread with R

56
   . It is this 

larger transverse beam size that helps mitigate the MBI in 
our situation. 

Figure 2: Illustration of R51-smearing effect due to small 
(left) and large (right) transverse beam size as the beam 
traverses a dipole. In the figure, the transverse emittance 
is set the same for the two cases but the beam sizes are 
different. In the left figure, R

51


x
10 m , while 

R
51


x
100 m in the right figure. The modulation 

wavelength is assumed 30 μm. 
 

SUMMARY 
We have derived a semi-analytical equation for 

microbunching analysis of general transversely coupled 
beams. The theoretical treatment we followed is largely 
from Refs. [3,4]. Solution to the integral equation has 
been benchmarked against particle tracking simulation; 
they show excellent agreement. An arc lattice, designed to 
transport a magnetized beam for downstream cooling, is 
shown to have nearly no microbunching gain. A more 
complete analysis will be carried out when a full-ring 
lattice is provided. 

We have shown that our Vlasov solver can be used for 
quick estimates of microbunching in magnetized beam 
transport, and for subsequent optimization of beamline 
design when MBI is a concern. This can be done without 
tracking a large number of simulation particles. 
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