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Abstract

We re-consider stochastic cooling as type of information

engine using the Adami definition of information [1]. We

define information as data which can permit the cooling

system to predict the individual trajectories better than purely

random prediction and then act on that data to modify the

trajectories of an ensemble of particles. In this study we track

the flow of this type of information through the closed system

and consider the limits based on sampling and correction as

well as the role of the underlying model.

INTRODUCTION

The view of stochastic cooling as a type of information

engine goes back to Simon Van Der Meer [2] the inventor

of stochastic cooling, who cast it as a form of the famous

Maxwell’s demon, which is currently understood as type of

information engine.

If we recall James Maxwell came up with a famous

thought experiment that challenged the ideas enshrined in

the second law of thermodynamics, specifically the idea that

for a system of particles in thermal equilibrium, where all

the fast and slow moving particles were completely mixed,

no more work could be extracted. Maxwell imagined a box

containing this distribution with a wall dividing it into two

sides (see Fig. 1). In the wall there was a door, which was

controlled by some demon that would open the door only for

fast moving particles and keep it shut for the slow particles.

In this way, over time, all the fast particles would come to

reside on one side of the box, leaving the slow particles on

the other. In this situation, a heat engine could be run from

the differential in temperature, and thus extracting work in

violation of the second law of thermodynamics.

For many years Maxwell’s demon challenged the under-

standing of entropy and the second law. Later, statistical

mechanics were worked into the existing thermodynamic

framework and entropy was understood as representing the

possible states of a given system. Finally, entropy made its

way into the new field of information theory when Shannon

equated the statistical definition of entropy with informa-

tion [3]. Maxwell’s Demon began to be understood as a

class of information engines. An information engine is cur-

rently understood as a system which can turn information

into work. Here information gathered by the demon con-

cerning the velocity of each particle represented a rise in

entropy. This is because this information needed to be stored

on some physical medium whose initial entropic state had

to be considered. So, for example, a magnetic tape, which

stores information as zeros and ones, needed to be first initial-

ized to be all zeros. This initialization placed the tape into a
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Figure 1: Fast (white) and slow (black) particle in equilib-

rium (top). Maxwell’s Demon opens door to sort particles

of different speed (bottom).

lower entropic state, which was then given up as information

was recorded. In the end, the work required to reset this

memory would consume more energy than was extracted,

thus preserving the second law. This is known as Landauer’s

erasure principle [4]. More recently a physical realization of

a type of Maxwell demon machine has been created using a

photon circuit [5]. However, the implications of Maxwell’s

Demon are still somewhat unresolved and debated.

ADAMI INFORMATION

Of course the stochastic cooling system doesn’t come any-

where near violating the second law of thermodynamics,

since the energy consumed by the amplifiers, and kickers

clearly introduce external energy to help lower the entropy

of the cooled beam. However as Simon Van Der Meer rec-

ognized, the set-up is actually very similar. In the classical

stochastic cooling system, there exists a pickup and kicker

which operates somewhat like the demon, in that the demon

(the cooling system) takes a measurement and then based on

that performs an operation. In the case of stochastic cool-

ing the demon kicks offending particles back into a lower

orbit (see Fig. 2). What is important here is that this system

uses ’information’ together with externally supplied energy

to lower the entropy and increase the order of the system,

which in this case it is the beam. This is different from

other standard cooling systems in that usually it involves an

exchange of energy in the form of gases, liquids or parti-

cles mixing with a cool bath (as in electron cooling) that

achieve the reduction of entropy. In the stochastic cooling

case information about the predicted behavior of the system

is a key component, without it, this type of cooling couldn’t

occur. Also the better one’s information is the more cooling

possible.
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Figure 2: Typical stochastic cooling layout with beam going

clockwise in ring. The beam position is sampled at the

pickup, amplified and sent to the kicker to correct the beam.

The key role of information motivates a better and more

precise definition of information. If we proceed using the

textbook Shannon definition of information we quickly dis-

cover that it is inadequate to describe the nature of the infor-

mation used in this system. This is because this definition

which relates entropy to information is really a measure-

ment of uncertainty and not a measure of what we would

commonly understand as being ’known’.

The problem with the classical Shannon definition of in-

formation has been recently pointed out by Adami [1]. He

claims that what Shannon called information and equated

with entropy was really a measure of uncertainty, not infor-

mation as it would be commonly understood. For example

a coin that can have two defined states, heads or tails, has

a defined amount of entropy, which is less entropy than a

six-sided dice, which has six possible states. This is what

Shannon called information, because a six-state system can

hold more bits of information than a two-state system.

In that same article he offers a compelling re-definition of

information as “that which allows you (who is in possession

of that information) to make predictions with accuracy better

than chance”.

To my knowledge this new definition of information has

yet to be applied to the case of Maxwell’s Demon or that

of stochastic cooling. The existing literature on Maxwell’s

Demon uses the standard Shannon version of information.

It would seem that using the new definition of information

wouldn’t alter the ultimate implications for the second law

of thermodynamics, however I would argue that it does alter

the conclusions about the role of information in generating

order. For example, Shannon’s definition relates the rise of

entropy with the rise of information. Information defined in

this way takes on a “negative” meaning with respect to order.

This I believe misses the role which the information plays

in facilitating the generation of order. If we use the Adami

understanding of information we can identify the inherent

information present in the system. This inherent information

is represented in the implied physical assumption that allows

the demon to predict the future trajectories of the particles

and thus sort them using the trapdoor, or even the fact that

faster particles are those that make a system “warmer”and

slower make a system “colder.”

This information inherent in the system is overlooked

using the standard definition of information. Further using

this approach permits a better linkage to biological systems

which use the information inherent in DNA to generate order.

Adami argues that it is this “information” that is the real

commodity of evolutionary biology. The better an organism

is at modeling its environment the more chance it has of

passing on its genes. The process of reflecting or adapting

to the environment drives evolution.

COOLING AS AN APPLICATION OF

ADAMI INFORMATION

We can now see how this new definition works very well

with the stochastic cooling system. This is because the effi-

ciency of the cooling depends directly on the ability of the

system to predict or have information about the trajectories

of the particles at the kicker site and to apply a correction.

It is clear that maximum cooling can be achieved if we have

perfect information about the trajectories of each particle

and the ability to apply corrections to each particle.

To understand this better lets review the case of trans-

verse cooling of coasting beam following [6]. If we assume

the bandwidth for the system depicted in Fig. 2 is W, this

results in a time resolution of Ts 1/(2W ). A particle pass-

ing through the pick-up off-axis induces a short pulse of Ts

length due to the finite bandwidth (W). This corresponds

to Ns = N/(2WT ) particles per sample with N being the

total number of particles in the beam. This signal is then

processed and applied to the particle of the beam with a trans-

verse position of xi via the kicker. The resulting corrected

position (xci) after the kick is given by,

xci = xi −
g

Ns

Ns∑

k=1

xk

= xi − g < x >s . (1)

Here g is the system gain. Here we see that the single pass

correction will be imperfect because the single for xi particle

is diluted with the other particles in the sample. We can see

clearly here that in the limit of infinite bandwidth our sample

will include only the same particle which we correct, thus

achieving a perfect correction.

If we proceed further, squaring both sides and evaluating

now ∆(x2
i
) = xc2

i
− x2

i
, we obtain,

∆(x2
i ) = −2g

xi

Ns

Ns∑

k=1

xk +




g

Ns

Ns∑

k=1

xk





2

∆(x2
i ) = −2g




x2
i

Ns

+
xi

Ns

Ns∑

k,i

xk



 +
g

2

Ns

x2
rms

∆(x2
i ) = −2g

x2
i

Ns

+
g

2

Ns

x2
rms . (2)
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Here we use the fact that the average for a sample of a distri-

bution goes to the average of the distribution which in this

case is zero (i.e.
∑Ns

k,i
xk = 0). Now averaging both sides

we get an estimate for the cooling time,

1

τ
= −

1

T

∆(x2
rms )

x2
rms

=

2W

N
(2g − g

2) (3)

We can see here directly how the efficiency of cooling scales

with ’information’ that we have about a particles position

via bandwidth. In this derivation there is also an implied

perfect mixing per turn. More precise cooling rates can be

derived with include imperfect mixing and noise effects.

Now considering a more formal definition of information

given in [1]. Information for the ’ith’ particle is defined,

I = Hmax − H (X )

I = log Nx +

Nx∑

j

pj log pj (4)

Here Hmax represents the maximum entropy and H (x) em-

bodies what you know about the probability distribution.

Here an important and subtle point made by Adami [1] and

Jaynes [7], needs to be clarified. The maximum entropy in

fact represents the measurement resolution. If one reflects

on the measurement of the entropy for the case of the coin,

it becomes clear that N=2 state ascribed to the coin is arbi-

trary as one could chose to measure any number of atributes

associated with the coin (i.e. planar orientation, temperature

etc.). This is because entropy is an anthropomorphic concept

and not a property of the physical system but a property of

the particular experiment chosen to perform on it.

For our case Nx represents the total number of states. This

represents the transverse resolution of our cooling system

both the resolution of the pickup and the resolution of the

kicker we can call it δx. This times the total possible posi-

tions gives us the maximum measurable beam size. Here

we limit ourselves to the known maximum beam size which

we call ±xmax . This gives Nx =
2xmax

δx
. So if all we know

about our system is that pi = 1/Nx or is uniform, then I = 0

or our information is zero.

With the first measurement the system now knows the

position of xi to within < x >s ±xrms/
√

Ns which makes

the probability that our ith particle is in the jth state or

position equal to,

pj =
e−(<x>s−xmax+δx j )2/(2x2

rms
)

xrms

√
2π

δx. (5)

Our information gain for the “ith” particle per turn can be

calculated,

I = log Nx +

Nx∑

j=1

pj log pj (6)

So we see as the sample size gets smaller or closer to single

particle i our information becomes greater until Ns = 1 in

which case the location of the jth particle is perfectly defined

as either 1 for the position which contains the particle or

zero for all other cases. This makes the
∑Nx

j=1
pj log pj = 0,

thus our maximum information is equal to the maximum

potential entropy or log Nx .

Another thing to point out is that if the particle distribution

was static, that is there is no particle mixing between samples

per turn, then each turn will sample the same distribution

and return the exact same information, thus there would be

no net gain in information about the particle distribution and

thus no cooling.

Proceeding further one might try and define a minimum

net information gain per turn for a given distribution which

would permit the cooling process to overcome the additional

uncertainty or entropy introduced from noise, inter-particle

scattered or other sources.

From one point of view the process of mixing due to syn-

chrotron motion might be viewed as driving a type of tomog-

raphy which adds additional linearly independent equations

to help resolve the individual particle’s unique phase space

coordinates. This might motivate other approaches to ren-

der more accurate information about the individual particles

phase space trajectories using additional sampling and high

precision lattice and longitudinal dynamics modeling.
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