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Abstract

A new method of using linear algebra technique to an-

alyze periodical nonlinear beam dynamics is presented in

ref. [1]. For a given system, a square upper triangular nonlin-

ear transfer matrix is constructed out of the truncated power

series transfer map. The square matrix is first separated into

different invariant subspaces with much lower dimensions

and we only focus on few invariant subspaces. An excellent

action-angle approximation to the solution of the nonlinear

dynamics can be obtained after applying Jordan transfor-

mation. We found that the deviation of linear action-angle

invariant (i.e. Courant-Snyder invariant) from constancy

of the new action provides a measure of the nonlinear of

the motions. Therefore the square matrix provides a novel

method to optimize the nonlinear dynamic system, and ma-

nipulate phase space as well. A chromaticity +7/+7 lattice

of the NSLS-II optimized with this method was successfully

commissioned. Our studies show that a basic “principle” –

confining tune-shift-with-amplitude to prevent tune from

crossing resonances in designing strong focusing storage

rings, with which was complied by accelerator physicists

for several decades, may not be an absolutely necessary

condition.

INTRODUCTION

The question of the long term nonlinear behavior of

charged particles in storage rings has a long history. To

gain understanding, one would like to analyze particle mo-

tion under many iterations of the one turn map. The most

reliable numerical approach is the use of a tracking code

with appropriate local integration methods. For analysis,

however, one would like a more compact and efficient repre-

sentation of the one-turn-map out of which to extract relevant

information. Among the many approaches to this issue we

may mention canonical perturbation theory, Lie operators,

power series, and normal form etc. Here, we would like to

look at this problem from a somewhat different perspective,

i.e., using linear algebra technique to analyze and optimize

nonlinear beam dynamics. The theory on the square matrix

method is explained in ref. [1]. In the following section, we

only summarize this method briefly.

THEORY

For a given periodical nonlinear dynamic system, such

as a particle moving in a storage ring, we use the complex

Courant-Snyder variable z = x̄−i p̄, its conjugate z∗ = x̄+i p̄

and powers to form a vector Z = (1, z, z∗, z2, zz∗, · · · , z∗n )T ,
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where T means taking the transpose of a vector. Here we

use 1D motion to simplify the notation. The one turn map

to transfer an initial status Z0 to its final status Z1 can be

represented by a square matrix M:

Z1 =MZ0 (1)

The matrix M is upper-triangular, and has the form

M =

������
�

1 0 · · · 0

0 M11 · · · M1n

...
. . .

...

0 0 · · · Mnn

������
�

(2)

Here each submatrix Mi j has different dimensions respec-

tively. Among them, Mii ’s are square diagonal submatrices.

A great simplification comes from a fact that the matrix is

upper tridiagonal with all its eigenvalues given by its di-

agonal elements precisely determined by the tune, which

represents the oscillation’s phase advance per turn μ = 2πν

solely. We can separate the full space spanned by the matrix

columns into different invariant subspaces according to the

eigenvalues. For example, all z(zz∗)k, k = 0, 1, · · · belong

to a same invariant space of the eigenvalue eiμ . We found

that the simplest invariant subspaces eiμ already provides

a wealth information about dynamics. In this way, the high

dimension matrix is reduced to several much lower dimen-

sion ones. For example, for a 2D x − y system (4D in phase

space), if we truncate the square matrix up to the 7th order,

its dimension is 330 × 330. The reduced matrix dimension

for eiμx and eiμy is only 10 × 10 respectively. Then a stable

Jordan decomposition, can be obtained on the low dimension

submatrices M j

N j = U jM jU
−1
j = eiμ j I j+τ j (3)

where the matrix N j with j = 1, 2, ... is the Jordan block with

eigenvalue ei μ j , corresponding to the j th invariant subspace

inside the space of vector Z. I j is the identity matrix, while

τj is a superdiagonal matrix:

τj =

����������
�

0 1 0 · · · 0

0 0 1 · · · 0
...
...
. . .

. . .
...

0 0 0
. . . 1

0 0 0 · · · 0

����������
�

(4)

The transfer of Z0 by the one turn map M inside the j th

subspace can be re-written as

W1 = UZ1 = UMZ0 = eiμI+τW0 (5)
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Unless explicitly stated, otherwise the subscript j is dropped

off since now. KAM theory states that the invariant tori

are stable under small perturbation. For sufficiently small

amplitude of oscillation in Z, the invariant tori are deformed

and survive, i.e., the motion is quasi-periodic. So the system

has a nearly stable frequency, and when the amplitude is

small, the fluctuation of the frequency is also small. Thus

for a specific initial condition described by Z0, the rotation

in the eigenspace should be represented by a phase factor

ei (μ+φ) so that

W1 = eiμI+τW0 � ei (μ+φ)W0. (6)

τ in Eq. (4) has no proper eigenvector, but only gen-

eralized eigenvectors. However, as the dimension of the

eigenspace increases and approaches infinity, the eigenvec-

tor of τ is defined as a coherent state:

τW0 � iφW0. (7)

Re-write W0 as a column with

WT
0 = (w0,w1,w2, . . . ) (8)

Here w j = r je
iθ j are the new action-angle variables. The

polynomials in Eq. (8) are w0 = u0Z0,w1 = u1Z0,w2 =

u2Z0, · · · . Then Eq. (7) reads as

τ
����
�

w0

w1

...

����
�

=

����
�

w1

w2

...

����
�

�

����
�

iφw0

iφw1

...

����
�

(9)

When the invariant tori survive and there is a stable fre-

quency, we see that Eq. (9) requires

iφ =
w1

w0

�

w2

w1

�

w3

w2

. . . (10)

Therefore only those vectors W0 which satisfy Eq. (10) with

φ a real number represent a motion with a stable frequency

given by a phase advance μ+φ every turn. From w0 = u0Z0,

we can see that φ is determined by the initial value Z0. Hence

μ represents the zero amplitude tune while φ is the amplitude

dependent tuneshift. Even though w0,w1,w2, · · · all behave

like action-angle variables, they have different power orders

of monomials of z, z∗ , and hence represent approximation

of the action-angle variable to different precisions. For ex-

ample, in the case of a up to 7th order square matrix for a

1D system, w0 has terms of order from 1st to 7th order, w1

has terms of order from 3rd to 7th order while w3 has only

a very small 7th order term z(zz∗)3. Thus w3 provides very

little information about the rotation in the phase space while

w0 has very detailed information.

Stable motion means the invariant tori can survive with

multiple turns. Applying Eq. (6) n times, we obtain

Wn = einμI+nτW0 = einμenτW0. (11)

After some algebra computation, we recognize that a stable

motion requires

�(φ) ≡ �(−
iw1

w0

) ≈ 0;Δ ≡
w1

w0

− (
w1

w0

)2 ≈ 0. (12)

These conditions are referred as “coherence conditions”.

Clearly w0, φ, and Δ are all functions of initial value of z, z∗.

For a given initial value ofw0, the deviation of the real part of

φ from a constant is the tune fluctuation, while the imaginary

part of φ gives “amplitude fluctuation”, i.e., the variation

of r = |w0 | after many turns. The non-zero Δ indicates a

deviation from “coherent state”, seems to be related to the

Liapunov exponents.

APPLICATION

In the following we give an example of applying the square

matrix method to manipulate phase space trajectory to op-

timize storage ring dynamic aperture. As described before,

the action defined with Courant-Snyder variable is no longer

constant when nonlinearity dominates over linear dynamics.

There is a significant deviation from circles in the Poincaré

cross-section. We characterize the deviation as a measure

of system nonlinearity. When the deviation is large, par-

ticles receive much larger nonlinear kicks, and hence the

motion becomes more chaotic, or even unstable. The bor-

der of stable motion is defined as dynamic aperture. The

goal of optimization is to reduce the deviation in order to

ensure a sufficient dynamic aperture. The philosophy of

minimization is equivalent to optimize the system so that

initial coordinates sitting on the flat linear Courant-Snyder

action planes after transferred by M can be mapped to the

new approximate invariants flat planes respectively, and vice

versa.

The example is to optimize the National Synchrotron

Light source - II lattice with a chromaticity +7 in both

horizontal and vertical planes. The NSLS-II lattice layout

is described in ref. [2]. Usually a lattice with high pos-

itive linear chromaticity is preferable because it can pro-

vide additional damping to stabilize high current beam.

But it is also more challenge for dynamic aperture op-

timization due to strong nonlinear sextupoles. First,

the linear chromaticity is tuned to +7 with dispersive

sextupoles, the knobs left for optimization are 6 fami-

lies harmonic sextupoles located in non-dispersive sec-

tions. For this specific example, we selected 3 sets of

initial values (x0[mm], px[mrad], y0[mm], py [mrad]) =

(25, 0, 5, 0), (10, 0, 2, 0) and (3.5, 0, 3, 0). For each set, we

cast totally 64 initial coordinates uniformly distributed on the

tori with constant Courant-Snyder actions. The new actions

rx,y after transferred by M for these 64 points are computed

under different sextupole configurations, and they are not

in flat planes any longer due to nonlinearity. A deviation

defined as Δr
r
=

max (ri )−min(ri )

r̄i
is chosen as optimization

objective. Here r̄i is the average over all 64 ri in a same

torus. Here multi-objective genetic algorithm (MOGA) [3]

was adopted to optimize for 3 sets initial values (totally 6

tori) equally and simultaneously. Actually the choice of

initial values is not unique. The question about how many

sets should be used, and how many points should be casted

inside each set, is open for future exploration. With 4000

populations for each generation, the MOGA converges to
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a stable solution with a minimum
∑

(Δr
r

) j after multiple

generations, here we sum the deviations over all three sets

j = 1, 2, 3.

Now we discuss the beam dynamics for this optimized

lattice with both simulation and experimental measurement.

First we compare two lattice configurations, which were

optimized with the nonlinear driving terms up to the 2nd

order, and with the square matrix method we introduce here.

Two configurations’ linear optics and chromatic sextupoles

settings are exactly same, only the geometric sextupoles

excitations are different. In Fig. 1, we show the simulation

trajectories of 5 particles starting with same initial conditions

in phase space y − py for these two settings. The left plot is

the result of minimizing the driving terms, and the right one

is obtained with the square matrix method. Different color

represents different initial conditions. The initial amplitudes

for these 5 particles gradually increase from 10 to 20mm

in the horizontal plane, and from 1 to 3mm in the vertical

plane, so the x-motion is nonlinearly coupled into y-motion,

generating complicated motion in y− py plane. It is obvious

that even though particles with the same initial conditions

can survive under both lattice settings, the optimization with

the square matrix method clearly reduces the nonlinearity

of the system significantly.
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Figure 1: Comparison of simulated trajectories of y − py in

Poincaré cross-section under two sextupole configurations

It is very interesting to take a close look the tune foot-

print of this optimized lattice as shown in Fig. 2. We are

surprised to observe a huge tune-shift-with-amplitude in

both horizontal and vertical planes. And more important

is that particles can survive in passing many resonances,

which were regarded as the “forbidden” resonances, such as

3νx = n. Under this sextupole configuration, 100% injec-

tion efficiency has been achieved with 9mm off-axis incident

beam.

Over several decades, ring designers comply with a ba-

sic “principle” – to choose a fractional tune far away from

low order resonances, and then to confine tune-shift-with-

amplitude to a narrow range. However, the minimization of

the deviation from invariant tori produces some solutions

which obviously violate this “principle”. In Fig. 3, we show

that the simulated horizontal phase trajectory in the Poincaré
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Figure 2: Frequency map analysis at x-y planes

cross-section when a particle sits on a third order resonance.
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Figure 3: particle stays stably on the third order resonance

In the left plot, the red line represents a torus with a fixed

Courant-Snyder action Jx , the blue dots are the simulated

coordinates with the symplectic tracking code “elegant” [4].

We can see that the third order resonance has been can-

celled almost perfectly. The frequency spectrum (right) of

simulated data shows that the particle can stay calmly and

stably on the resonance 3νx = n. Further exploration to

understand beam nonlinear behavior in the vicinity of res-

onances is under way. Thus far, we believe that confining

tune-shift-with-amplitude in order to avoid resonances is not

an absolutely necessary condition if the deviations from flat

planes can be well controlled. This example also suggests

a new lattice design philosophy, i.e. instead of confining

tune footprint, one can tune the nonlinear knobs in order to

minimize the deviations at different amplitudes of wx,y to op-

timize dynamic aperture. Of course, the aperture shrinks if

we take magnets imperfections into account, but simulation

shows that it still crosses the third order resonance.
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