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Abstract 
The presence of duodecapole components in 

quadrupole focusing field results in excitation of sixth-
order single-particle resonance if the phase advance of the 
particles transverse oscillation is close to 60o. This 
phenomenon results in intensification of beam losses. We 
present analytical and numerical treatment of particle 
dynamics in the vicinity of sixth-order resonance. The 
topology of resonance in phase space is analyzed. Beam 
emittance growth due to crossing of resonance islands is 
determined. Halo formation of intense beams in presence 
of resonance conditions is examined. 

INTRODUCTION 

An ideal quadrupole lens has a constant gradient across 
the aperture created by poles with infinite hyperbolic 
shape. Unavoidable deviations from ideal pole shape 
results in the appearance of higher order harmonics in the 
quadrupole field spectrum. The vector-potential of the 
magnetic field of a lens with quadrupole symmetry 
contains harmonics of the order 2(2m 1), m  0,1,2....: 

Az  -[
G2

2
r2 cos2+

G6

6
r6 cos6+

G10

10
r10 cos10+..] , (1) 

where G2  is the gradient of quadrupole lens, G6  is the 

duodecapole component, G10  is the “20-poles” 

component. The vertical component of the magnetic field 
along abscissa is given by 

By (x, 0)  G2 x G6x5 G10 x9  ....  .    (2) 

While traveling through a quadrupole lens of length D, 
particles receive a momentum kick, which contains linear 
and nonlinear parts: 


dx
dz

 
qD

mc
(G2 x G6 x5 G10 x9 ...) .      (3) 

The presence of duodecapole harmonic in quadrupole 
field results in excitation of sixth-order resonance if phase 
advance of transverse oscillations per focusing period is 
close to 60o. Increase of beam losses near 60o phase 
advance was observed experimentally at SNS linac [1]. 
Minimization of duodecapole component requires specific 
pole shape of quadrupole lenses [2]. In present paper we 
estimate effect of 6th order resonance on beam expansion. 
___________________ 
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HAMILTONIAN OF SIXTH-ORDER 
RESONANCE 

    Consider particle motion in a quadrupole channel with 
focusing period S  in the presence of duodecapole 
components. The quadrupole channel is substituted by a 
continuous focusing channel with phase advance o  per 

period, which for FODO focusing structure is determined 
as 

o 
S

2D
1

4

3

D
S

qG2 D2

mc
.    (4) 

Presence of duodecapole component is introduced as an 
additional nonlinear momentum kick, which particle 
receives once per focusing period. In the adopted 
approximations, single particle motion is described by a 

 

matrix: 
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 ,       (5) 

where n is the number of focusing period, x  is the 
particle position, p  is the modified particle momentum, 

and p  is the nonlinear kick due to presence of 

duodecapole component: 

p  S
o

dx
dz

, p  5 x5 .    (6) 

Let us introduce action-angle variables through 
transformation: 

x  2J cos ,   p   2J sin . (7) 

Normalized emittance of the beam bounded by the ellipse 
in phase space is related to introduced action value as 

  2 J  o

S
. (8) 

Analysis shows that the Hamiltonian describing slow 
motion near 6th order resonance is given by 

H (J, )  J 
5

4
J 3 

5

24
J 3 cos 6 ,    (9) 

where   o  / 3 is the deviation from “resonance” 

angle  60o. 
Figure 1 illustrates topology of phase space structure. A 

particle moves either along internal phase space trajectory 
or along external islands with larger amplitude.  In the 
vicinity of point Ju , particle motion is unstable. The 
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particle might either remain inside internal phase space 
trajectory, or be trapped into resonance separatrices. 
 

FIXED POINTS AND ISLANDS SIZE 
 

The expression for the Hamiltonian, Eq. (9), allows us 
to analyze particle motion in the vicinity of resonance 
islands and to determine basic characteristics of phase 
space patterns. Fixed points (stable and unstable) are 
determined by equations 
 

dJ
dn

 
H


 
5

4
J 3 sin 6  0 ,                 (10) 
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6
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Equation (10) has a solution sin 6  0 , or cos 6  1. 

Unstable points are determined by condition cos 6 u  1, 

which gives for the action variable at unstable point 
 

Ju 
8

7


5

,    u 

3

k ,      k  0,1,2,...  (12)  

 

Stable points are determined as cos 6 s  1, which gives 

for the action variable 
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8

5


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,      s 

6


3

k ,    k  1,2,...   (13)  

 

For practical reasons, it is important to determine the 
maximal value of action variable, which defines 
expansion of phase space area comprised by the beam. 
The outer separatrix touches the inner one at the unstable 
point, where Hamiltonian, Eq. (9), has the value 
Hu  2Ju / 3 . The value of the Hamiltonian is 

approximately the same at the internal unstable trajectory, 
and at the external separatrices. Particle with the value of 
Hamiltonian Hu  reaches the point Jmax  having 

cos 6  1. Substitution of the value of the Hamiltonian 

at the unstable point into Eq. (9) gives an expression for 
determination of the value of Jmax : 

 

Jmax 
5

24
5 Jmax

3 
2

3
Ju  0 ,                   (14) 

 
which has the solution Jmax  1.54Ju  or  
 

Jmax  1.54
8

7


5

.      (15) 

 
Relative increase of amplitude of particle trapped into 

resonance is xmax / xu  1.54  1.24. Taking into account 

Eqs. (8) and (12), the beam emittance corresponding to 
oscillations within internal phase space trajectory is 
restricted by the value 

 
Figure 1: Topology of 6th order resonance. 
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S
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From Eq. (11), angular velocity in phase space drops from 
the value of   in the center of phase space to zero at 
unstable point. Due to nonlinear dependence of betatron 
tune on amplitude of oscillation, distortion of beam phase 
space becomes significant for beam emittance   0.6u . 

 
NUMERICAL SIMULATION of 6th ORDER 

RESONANCE 
 

As an example, consider dynamics of single particle in 
FODO lattice with lens-to-period ratio D / S  1/ 3, phase 
advance per period o = 62.6o (  0.0454 ), and the 

value of duodecapole kick 5  0.254 cm4  (see Fig. 2). 

Because in FODO channel particle receives two nonlinear 
kicks per period, we approximate value of 5  from Eq. 

(3) as 

5  2
qG6 DS

mc o

.    (17) 

 

Figure 3 illustrates dynamics of single particle calculated 
by matrix method, Eq. (5), and through direct integration 
of equations of motion in FODO lattice. Figure 3b 
illustrates stroboscopic image of phase space motion 
through plot of particle position in phase space once per 
period of FODO focusing channel. Phase space areas 
comprised by single particle in matrix mapping and in 
direct integration are close to each other.  

Figure 4 illustrates emittance growth of the beam with 
initial KV distribution in the same focusing structure. As 
seen, presence of 6th order resonance results in 
degradation of phase space area and appearance of tails in 
beam distribution. In presence of space charge, effective 
betatron tune,  , is lowered due to space charge 

repulsion: 

2  o
2  k 2I

Ic ( )3 (
S
Re

)2 ,  (18) 
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Figure 2: FODO channel with quadrupole G2  and 

duodecapole G6  field components. 
 

                        (a)                                    (b) 

    
 
Figure 3: Dynamics of single particle in FODO focusing 
channel with D / S  1/ 3, o =62.6o, 5  0.254 cm4 : (a) 

matrix method, Eq. (5), (b) direct integration in FODO 
field. 

 
where I  is the beam current, Ic  4omc3 / q= 

3.13107 A / Z [Amp]  is the characteristic current, Re  is 

the average beam radius, and k  1...2  is the coefficient 
depending on beam distribution. Due to non-uniform 
beam distribution, the value of depressed phase advance 
varies from   in beam core till o  at the beam periphery. 

Figure 5 contains results of simulation of the beam in 
FODO lattice with D / S  1/ 3, o = 86o, 5  8.6 cm4  

for different beam distributions with depressed betatron 
tune   below 60o. Due to spread of betatron tune, there 

are particles, which are trapped into resonance. Initial 
beam distributions are characterized by tails in phase 
space, which become longer after trapping into resonance 
creating significant beam halo. 
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(a)        n = 0         n = 34 

    
(b) 

     
 

Figure 4: Distortion of the beam in FODO lattice: (a) 
 / u  0.5 , (b)  / u  0.6 . 

 
(a)       n = 0          n = 8 

      
(b) 

       
(c) 

     
Figure 5: Dynamics of the beam in the vicinity of 6th order 
resonance for different beam distributions in the lattice 
with o = 86o : (a) water bag, =58o  (b) parabolic, 

=54o , (c) Gaussian, =38o.  
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