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Abstract
We analyze single bunch transverse instabilities due to

wakefields using a Fokker-Planck model. We expand on
the work of Suzuki [1], writing out the linear matrix equa-
tion including chromaticity, both dipolar and quadrupolar
transverse wakefields, and the effects of damping and dif-
fusion due to the synchrotron radiation. The eigenvalues
and eigenvectors determine the collective stability of the
beam, and we show that the predicted threshold current for
transverse instability and the profile of the unstable agree
well with tracking simulations. In particular, we find that
predicting collective stability for high energy electron beams
at moderate to large values of chromaticity requires the full
Fokker-Planck analysis to properly account for the effects of
damping and diffusion due to synchrotron radiation.

INTRODUCTION
Understanding, predicting, and controlling collective in-

stabilities is an imporatnt part of storage ring design and
operation. Single bunch transverse instabilities are of par-
ticular importance in high-energy electron storage rings, as
they typically set the limit on the maximum achievable cur-
rent. The standard analysis of these instabilities decomposes
the linearized Vlasov equation into normal modes, and then
stability is determined by comparing the maximum growth
rate with the transverse synchrotron and Landau damping
rates (see, e.g., [2–6]). However, synchrotron emission re-
sults in both damping and diffusion in phase space, so that
when synchrotron radiation provides the dominant damping
mechanism it can render the Vlasov model incomplete. This
is often the case for high energy electron storage rings, in
which case a Fokker-Planck description must be employed
to accurately predict stability. Here we build on the work of
Ref. [1] to develop a more complete Fokker-Planck analysis
of transverse stability, where particular attention is paid to
the dynamics at large chromaticity.

MODEL EQUATIONS
Our starting point is very similar to the Hamiltonian mod-

els in the textbooks [4, 5], but it includes the Fokker-Planck
damping and diffusion associated with synchrotron radiation.
Hence, the distribution function F obeys the equation
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Here (z, pz ) = (ct − s,−δ) are the longitudinal variables,
(J ,Ψ) are the transverse action-angle variables, τz is the
longitudinal damping time, σδ is the equilibrium energy
spread, τx is the transverse damping time, ε0 is the nat-
ural emittance, and {, } denotes the Poisson bracket. We
assume that the HamiltonianH is comprised of the linear
synchrotron and betatron motion, the first order chromatic-
ity nonlinearity, and the lowest order effects of the dipolar
wakefield. The basic procedure to simplify Eq. (1) is to
1. linearize with respect to perturbations about the self-

consistent equilibrium;
2. assume that the transversemotion is described by dipole

oscillations at the (chromaticity-corrected) betatron fre-
quency

3. expand the longitudinal perturbation as a sum of linear
modes in longitudinal action and angle;

4. solve the resulting eigenvalue problem to determine
normal modes and complex frequencies as a function
of current I and chromaticity ξx .

Mathematically, the first two steps can be expressed as

F = f0(J )g0(Hz ) + f1(Ψ,J ; s)g1(z, pz ; s), (2)

where the equilibrium is a negative exponential in action,

f0(J )g0(Hz ) =
e−J /ε0

2πε0

e−I/〈I〉

2π〈I〉
, (3)

while the perturbation is a product of a simple dipole oscil-
lation in the transverse dimension [2], with all the wakefield-
driven complexity in the longitudinal perturbation g1:

F1 ∝ −
√
J /2 f ′0(J )e−i[Ω−(Ψ+kξ z)+ωβ s/c]g1(z, pz ). (4)

Here, (Ψ + kξ z) represents the chromaticity corrected be-
tatron oscillation phase, with the head-tail phase kξ ≡
ω0ξx/αcc [7], while Ω is the complex frequency, and insta-
bility is characterized by =(Ω) > 0.

We insert the perturbation (4) into the Eq. (1) and isolate
the betatron oscillations by multiplying by

√
J e−iΨ and inte-

grating over the transverse dimensions. When the dust clears
the transverse part of the Fokker-Planck operator reduces to
a simple damping term with damping time τx . This is be-
cause we have assumed that there is no interesting structure
in the transverse plane; in contrast to this, we will find that
the longitudinal Fokker-Planck damping and diffusion will
depend on the longitudinal mode profile.

The next step is to linearize the problem for |g1 | � 1 and
apply Sacherer’s linear mode formalism by expanding g1 as
a sum of orthogonal linear modes

g1(Φ, r) =
∞∑
q=0

∞∑
n=−q

an
q

rn/2Ln
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(q + n)!/q!
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Here Ln
q (r) is the associated Laguerre polynomial, the scaled

longitudinal action r ≡ I/〈I〉 with 〈I〉 ≡ σzσδ , while the
radial mode number is q and the azimuthal mode number is
n; the number of nodes in r of the orthogonal mode functions
equals p if m ≥ 0, and p+m if 0 > m ≥ −p. After a lengthy
calculation similar to that in [4,5] and detailed further in [8],
we find that the linearized equation for the mode coefficient
an
p becomes
[
Ω − mωs

c
+

i
cτx
+

i(2p + m)
cτz

]
am
p +

2πI
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)
, (6)

where the Alfven current IA ≈ 17 kA and γ is the mean
energy; the dipolar impedance coupling matrix is
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, (7)

while the Fokker-Planck diffusive coupling terms are

Rm
p =

√
(p + 1)(p + m), Tm

p =
√

p(p + m + 1). (8)

The first thing to note about the Fokker-Planck mode
equation (6) is that the effective longitudinal damping time
of the mode with radial, angular mode number (p,m) is
τz/(2p + m). This decreasing damping time contrasts with
the Vlasov results and was first found in Ref. [1]. It can be
understood if we consider the fact that the diffusion time tdiff
for a perturbation of scale length ∆pz is given by

tdiff ∼
(
∆pz
σδ

)2
τz ∼

τz
2p + m

, (9)

where the second scaling comes from the asymptotic proper-
ties of the Gauss-Laguerre functions. Hence, diffusion acts
more strongly to smooth out the fine structure associatedwith
high-order modes. It turns out that in the zero-chromaticity
limit studied by Ref. [1] we have the usual transverse mode
coupling instability (TMCI), wherein the (p,m) = (0, 0)
mode merges with the (1,−1) mode. In this case the addi-
tional dissipative terms do not strongly affect the dynamics.
On the other hand, increasing the chromaticity stabilizes
the low-order modes such that the unstable profiles are com-
prised of a superposition of many higher-order modes. In
this limit we will find that the increase in mode damping
plays a significant role in stabilizing the dynamics.

TRANSVERSE INSTABILITY FOR
LARGE CHROMATICITY

We have found that the Fokker-Planck theory can be
relatively well-approximated by retaining only the (0, 0)
and (1,−1) modes provided the chromatic head-tail phase
kξσz . 0.7; in more familiar units this implies that ξ .

Figure 1: Twiss functions and basic parameters.

0.7αcc/ω0σz , where αc is the momentum compaction, ω0
is the revolution frequency, and σz is the rms bunch length.
At larger values of chromaticity many modes play a role
in the dynamics, and the effectively large Fokker-Planck
damping serves to help stabilize the dynamics.

To illustrate these effects, we have compared elegant [9]
simulation results to our theory for a simplified model of
the APS-U lattice [10] and its impedance [11]. In particular,
we use the linear lattice and essential parameters of the 67
pm lattice shown in Fig. 1. The one simplification that we
have made to the lattice is that we have artificially set the
second order chromaticity to zero; it turns out that the large
second order chromaticity lowers the instability thresholds
in a manner that we have been able to incorporate in the
model, but is beyond the scope of the present work.
In addition, for this study we have chosen to use the re-

sistive wall impedance of the ring to model the transverse
wakefields. Specifically, we assume that the chamber is ei-
ther round or essentially flat with a half-gap of b(s) that
varies slowly over its length. Then, the ring-average dipole
impedance can be approximated by

ZβD (k) = ηD

∮
ds βx (s)

sgn(k) − i
πb(s)3

√
Z0ρ(s)

2|k |
, (10)

where ρ(s) is the piece-wise constant resistivity, sgn(k)
gives the sign of k, and the factor ηD depends on the chamber
geometry, with ηD = 1 for round chambers and ηD = π2/24
for flat chambers [12]. In summary, we take the scaled, β
function-weighted dipolar impedance to be

ZβD (k) = ZRW
sgn(k) − i
|k[1/m]|1/2

with ZRW = 25 MΩ. (11)

Finally, while the quadrupolar impedance vanishes in round
vacuum chambers, the flat ID chambers have ZQ (k) =
−ZD (k); we discuss this effect in Ref. [8].
We compare predictions for this model lattice and

impedance in Fig. 2, where we plot the instability thresh-
old current Ithresh as a function of chromaticity for both the
Fokker-Planck theory and the elegant simulations. We see
that the theory and simulation agrees well over a wide range
of chromaticity at both the nominal voltage of Vrf = 4.1 MV
and the hypothetical Vrf = 8.2 MV.
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Figure 2: Comparison of theory and simulation for the pre-
dicted instability threshold as a function of chromaticity for
the APS-U 67 pm lattice. The purple (blue) region shows
where the 2-mode theory is valid for Vrf = 4.1 (8.2) MV.

At vanishing chromaticity we have the usual TMCI, where
the impedance shifts the frequency of the m = 0 mode
until it merges with the (nearly constant) m = −1 mode
frequency ≈ ωs . In this case the threshold current increases
as the frequency difference∼ ωs increases, so that increasing
the rf voltage leads to larger Ithresh. As mentioned earlier
the two-mode approximation is valid if the chromaticity
“low”; we show this region defined by kξσz < 0.7 by the
purple (blue) shaded region for an rf voltage of 4.1 (8.2)
MV in Fig. 2. In this region it turns out that increasing
the chromaticity first decreases Ithresh as the dipolar matrix
becomes complex, and then increases the current as themode
merging picture becomes a less accurate description of how
the instability develops. Finally, the edge of the shaded
region shows where the two mode approximation predicts
no instability, so that accurate madeling must incorporate
more higher order modes.

As the chromaticity is increased further, different spectral
regions of the impedance play a role according to the head-
tail frequency shift. In addition, the unstable mode profile
becomes a superposition of an ever increasing number of
orthogonal modes. We show a comparison between the
unstable mode profile predicted by theory and extracted
from the elegant simulations at ξ = 5 in Fig. 3. Figure 3
shows that the unstable mode is largely comprised of m = −4
modes, although roughly 20% have m = −3 and m = −5.
For these parameters Landau damping plays a negligible
role in determining stability.

CONCLUSIONS
We have presented a Fokker-Planck theory of collective

instability, and shown that it agrees well with simulation for a
model problem. We have found that the classic TMCI picture
holds for only a limited range about ξ = 0. For most of the
considered range of chromaticity the unstable eigenmode is
comprised of many basis modes, and longer bunch lengths

Figure 3: Comparison of theory (a) with simulation (b) for
=(g1) of the unstable mode at ξ = 5 and I = 2.25 mA.

with lower peak currents lead to higher instability thresholds.
We believe that similar analysis should apply to other high
energy electron storage rings, although the analysis becomes
complicated when the longitudinal potential is distorted by
wakefields and/or higher harmonic rf systems.
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