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Abstract
The space charge (SC) is known to be one of the major

limitations for the collective transverse beam stability. When
space charge is strong, i.e. SC tune shift� synchrotron tune
Qs, the problem allows an exact analytical solution. For that
practically important case we present a fast and effective
Vlasov solver schargev (Space CHARGE Vlasov) which
calculates a complete eigensystem (spatial shapes of modes
and frequency spectra) and therefore provides the growth
rates and the thresholds of instabilities. schargev 1.0 in-
cludes driving and detuning wake forces, and, any feedback
system (damper). In the next version we will include coupled
bunch interaction and Landau damping. Numerical exam-
ples for FermiLab Recycler and CERN SPS are presented.

INTRODUCTION
schargev 1.0 is based on SSC theory developed in

[1–3]. In this section we will briefly summarize its re-
sults for a single bunch with longitudinal distribution func-
tion f (τ, v) where τ is the position along the bunch mea-
sured in radians and v is the particle longitudinal veloc-
ity. Solutions describing transverse modes for zero-wake
case (SSC harmonics [νk,Yk(τ)]) form an orthonormal basis∫
ρ(τ)Yl(τ)Ym(τ) d τ = δlm and satisfy

1
Qeff(τ)

d
dτ

(
u2(τ)dY (τ)

dτ

)
+ νY (τ) = 0 ,

d
dτ

Y (τ)
����
τ=±∞

= 0 ,

where Qeff is the effective space charge tune shift

Qeff(τ) = Qeff(0)
ρ(τ)
ρ(0) ,

ρ is the normalized line density

ρ(τ) =
∫

f (τ, v) d v :
∫

ρ(τ) d τ = 1 ,

and temperature function u2 is the average square of particle
longitudinal velocity

u2(τ) =
∫

f (τ, v) v2 d v
/
ρ(τ).

The modified dynamic equation including the wake and the
damper is

1
Qeff(τ)

d
dτ

(
u2(τ)dY(τ)

dτ

)
+ ωY(τ) =[

<
(
Ŵ + D̂

)
− i g eiψ Ĝ

]
Y(τ) .
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The operators of wake forces are defined in terms of driv-
ing and detuning wakes, respectively

ŴY (τ) =
∫ ∞

τ
W(τ − σ) ρ(σ)Y (σ) ei ζ (τ−σ) dσ ,

D̂Y (τ) = Y (τ)
∫ ∞

τ
D(τ − σ) ρ(σ) dσ ,

where the lower limit guarantees the causality, i.e. σ > τ.
ζ = −ξ/η is the negated ratio of conventional chromaticity,
ξ, and a slippage factor, η = γ−2

t − γ−2.

< = Nb
r0R0

4 π γ β2 Qβ

where Nb is the number of particles per bunch, r0 is the
classical radius of the beam particle, R0 is the average accel-
erator ring radius, Qβ as the bare betatron tune, γ is Lorentz
factor and β is the ratio of particle velocity to speed of light.
The operator of damper is defined through the pickup

P(τ) and kicker K(τ) functions

ĜY (τ) = K(τ)
∫ ∞

−∞
P(σ) ρ(σ)Y (σ) ei ζ (τ−σ) dσ.

g and ψ are the dimensionless gain and the damper’s phase.
The convention is such that resistive damper defined as g > 0
and ψ = 0, and, ψ = ±π/2 are focusing and defocussing
reactive dampers respectively.

Expansion over the zero-wake basis of SSC harmonics

Yk(τ) =
∞∑
i=0

C(k)i Yi(τ)

leads to the eigenvalue problem M · C(k) = ωkC(k) where
the matrix M depends on head-tail phase ζ

Mlm = νl δlm + <
[
Ŵlm(ζ) + D̂lm

]
− i g eiψĜlm(ζ)

with matrix elements being

Ŵlm =

∫ ∞

−∞

∫ ∞

τ
dσ d τ

W(τ − σ) ρ(τ) ρ(σ)Yl(τ)Ym(σ) ei ζ (τ−σ) ,

D̂lm =

∫ ∞

−∞

∫ ∞

τ
dσ d τ D(τ − σ) ρ(τ) ρ(σ)Yl(τ)Ym(τ) ,

Ĝlm =Kl(ζ)P∗m(ζ) , where

Pk =

∫ ∞

−∞
d τ P(τ) ρ(τ)Yk(τ) ei ζ τ ,

Kk =

∫ ∞

−∞
d τ K(τ) ρ(τ)Yk(τ) ei ζ τ .

For the sake of convenience we will separate real and imagi-
nary parts of eigenvalues and denote them as ωk = ∆k + i Γk .
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SCHARGEV 1.0
schargev has two models of longitudinal phase-space:

Gaussian and Hoffman-Pedersen distribution functions

f (G)(τ, v) = 1
2 π a b

exp
[
− τ2

2 a2 −
v2

2 b2

]
,

f (HP)(τ, v) = 3
2 π a b

√
1 − τ

2

a2 −
v2

b2 H
[
1 − τ

2

a2 −
v2

b2

]
,

where H(τ) is the Heaviside step function. First one repre-
sents a thermalized beam (the average square of the particle
longitudinal velocity is constant) with Gaussian line density

ρ(τ) = 1
√

2 π a
exp

[
− τ2

2 a2

]
, u2(τ) = b2,

while for Hoffman-Pedersen distribution the average square
of velocity, as well as line density, is quadratic with τ

ρ(τ) = 3
4 a

(
1 − τ

2

a2

)
, u2(τ) = b2

4

(
1 − τ

2

a2

)
.

Using normalized variables where τ is measured in units
of a and ν in units ofQ2

s/Qeff(0), the eigenfunction equations
for transverse bunch oscillations are

d
dτ

[
d
dτ

Y (τ)
]
+ ν e−τ

2/2 Y (τ) = 0 ,

Y ′(±∞) = 0 ,
d
dτ

[
(1 − τ2) d

dτ
Y (τ)

]
+ 4 ν (1 − τ2)Y (τ) = 0 ,

Y ′(±1) = 0 .

Both eigenproblems were solved numerically for first 40
modes using Mathematica 10.0. First few eigenvalues and
eigenfunctions are listed in Table 1 and presented in Fig. 1.

Table 1: Eigenvalues νk for Gaussian and Parabolic Bunches.

k 0 1 2 3 4 5
ν(G)
k

0 1.342 4.325 8.898 15.053 22.787
ν(HP)
k

0 1.156 3.591 7.271 12.191 18.347
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Figure 1: First five SSC harmonics Yk(τ) for Gaussian (left)
and Hoffman-Pedersen (right) longitudinal distribution func-
tions. Dashed black line shows line density of a bunch.
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Figure 2: Chromatic factors at strong space charge as func-
tions of head-tail phase for Gaussian (left) and Hoffman-
Pedersen (right) longitudinal distribution functions.

Bunch Dipole Moments and Damper
SSC harmonics defines dipole moments characterizing

contribution of the specific harmonic to the motion of a total
center of mass. As functions of the head-tail phase they are

Ik(ζ) =
∫ ∞

−∞
ρ(τ)Yk(τ) ei ζ τ d τ ,

satisfying following parity property

I∗k (ζ) = Ik(−ζ) = (−1)k Ik(ζ) .

Corresponding functions were numerically evaluated for
ζ ∈ [−50, 50] and its absolute squares are presented in Fig. 2.
When damper is bunch-by-bunch and flat (it sees the cen-

ter of mass of an individual bunch and applies a dipole kick
uniformly along its length) the pickup and kicker functions
are P,K(τ) = 1. In this case the damper can be expressed
as a matrix of direct product of dipole moments

Ĝlm(ζ) =
∫ ∞

−∞

∫ ∞

−∞
d τ dσ ρ(τ)ρ(σ)Yl(τ)Ym(σ) ei ζ (τ−σ)

= Il(ζ)I∗m(ζ) = (−1)mIl(ζ)Im(ζ).

Wake Forces
Double integrals in expressions for driving and detuning

wake matrix elements can be reduced to single

Ŵlm(ζ) = i (−1)m+1
∫ ∞

−∞
Z⊥(ω − ζ)Il(ω)Im(ω)

dω
2π

,

D̂lm =

∫ ∞

−∞
F(τ)ρ(τ)Yl(τ)Ym(τ) dτ ,

where F(τ) =
∫ ∞
τ

D(τ−σ) ρ(σ) dσ is the quadrupole wake
field along the bunch and transverse impedance is

Z⊥(ω) = i
∫ ∞

−∞
W(τ)e−iωτ dτ.

Using these expressions any wake field can be used.
schargev’s default library includes matrix elements for
model constant and oscillating wakes, and, more realistic
resistive wall and broad-band resonator wake fields.
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APPLICATIONS
schargev 1.0 is equipped with a library of precalculated

matrices and solves the eigenvalue problem for matrix with

Mlm = νl δlm + <
[
Ŵlm(ζ) + D̂lm

]
− i g eiψĜlm(ζ) .

Belowwe will demonstrate how to analyze the beam stability
using FermiLab Recycler and CERN SPS impedance models
(for simplicity we will neglect the action of detuning wake).

Without damper when ζ , 0 the beam is unstable for
all values of <. An example of coherent growth rates as
functions of the head-tail phase for single parabolic bunch
in CERN SPS ring is presented in Fig. 3. Figures suggest
the conventional logic: to operate an accelerator at ζ < 0
when below the transition energy (and ζ > 0 above the
transition) in order to minimize the most unstable growth
rate. At the same time an opposite to conventional sign of
chromaticity has a hidden advantage: for small values of
|ζ | the only unstable mode is 0-th. This rather general case
gives a hope that the use of resistive damper will help to
stabilize the beam since 0-th mode is visible well (see [4]
for more details).

Figure 4 shows another example: single Gaussian bunch in
FNAL Recycler (resistive wall wake). Now the only growth
rate of the most unstable mode as a function of the head-
tail phase and gain of resistive damper is plotted. As has
been expected for 0 < ζ < 1 and g ∼ 1 there is a “Lake of
Stability” where all modes have negative growth rates [4].

CONCLUSION
The fast and efficient Vlasov solver schargev 1.0 with

two models of longitudinal phase-space has been created.
Gaussian distribution represents thermalized bunch, while
Hoffman-Pedersen distribution is a good model for well
collimated beam. The code includes driving and detuning
wake functions and any feedback. Thework on couple-bunch
wakes and Landau damping is in progress.

As a first result we observed that resistive bunch-by-bunch
damper will stabilize the single-bunch instability for 0 <
ζ < 1. Note that the chromaticity sign is opposite to
conventional.
In a similar manner schargev allows to quickly predict

growth rates and analyze the bunch spectra for wide range of
impedance functions and various parameters of a feedback
system.
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Figure 3: Coherent growth rates for the parabolic bunch with
the wake function corresponding to CERN SPS impedance
(broad-band resonator ωR = 1.3 × 2 πGHz) as functions of
the head-tail phase. Top and bottom figures show different
intensities.

Figure 4: Growth rate of the most unstable mode for the
Gaussian bunch with the resistive wall wake as a function of
the head-tail phase and gain of resistive flat bunch-by-bunch
damper. Gray color shows the “Lake of Stability”.
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