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Abstract 
In a strongly nonlinear system the particle distribution 

in the phase space may develop long tails which contribu-
tion to the covariance (sigma) matrix should be sup-
pressed for a correct estimate of the beam emittance. A 
method is offered based on Gaussian approximation of 
the original particle distribution in the phase space 
(Klimontovich distribution) which leads to an equation 
for the sigma matrix which provides efficient suppression 
of the tails and cannot be obtained by simply introducing 
weights. This equation is easily solved by iterations in the 
multi-dimensional case. It is also shown how the eigen-

emittances and coupled optics functions can be retrieved 
from the sigma matrix in a strongly coupled system. 

INTRODUCTION 

Finding normal mode emittances (eigen-emittances) or 

just second order moments from experimental or simula-

tions data is needed for many applications, most notably 

in analysis of particle cooling. In the cooling process the 

non-Gaussian tails can develop producing a significant 
contribution to the second moments of the distribution. Of 
course we can make cuts but since the emittances are not 
known in advance the procedure is ambiguous. 

Furthermore, besides suppression of the halo contribu-
tion, an acceptable method must also provide the exact 
result in absence of the halo. In the next section it is 
shown how to do this. 

In the third section we show – using the theory devel-
oped by V. Lebedev & A.Bogacz [1] – how to find eigen-

emittances and optics functions from a known covariance 
matrix in the case of coupled oscillations.  

Finally, in the Appendix we make an estimate of the er-
ror in eigen-emittances if the mechanical momenta are 
used instead of the canonical ones. 

GAUSSIAN FIT OF THE KLIMONTO-
VICH DISTRIBUTION 

First let us introduce notation conventions: underlined 
characters will denote (column) phase space vectors, 
whereas upright capital letters will be used to designate 
matrices. 

Following [2] let us choose the path length s along the 
reference orbit as the independent variable and dynamical 
variables in the form: 
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where Px,y are canonical momenta normalized by the 

reference value p0=mc00:  
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with px,y and Ax,y being  the components of the mechanical 
momentum and magnetic vector potential respectively 
(we use Gaussian units). Finally, 
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Suppose that from measurements or simulations we 
have a set of N particles positions in the phase space, z(k), 
k = 1,…, N, and our task is to find the normal mode emit-
tances. Let us first assume that the given distribution does 
not contain long tails (outliers) and therefore we can use 
simple averaging to find elements of the covariance ma-
trix : 
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Now consider particle distribution in the phase space 
which is sometimes referred to as the Klimontovich dis-
tribution: 
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where 6D is the six-dimensional Dirac’s -function.  
Our task is to approximate distribution (5) with a 

smooth function. We will employ Gaussian distribution, 
though other functions (e.g. parabolic) can be used: 
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where n is the dimensionality of the problem (n = 6 in our 
case) and (a, b) means a scalar product. Parameter  can 
be considered as the fraction of particles in the beam core.  

For a moment let us replace point-like particles in dis-

tribution G with spheres of radius  so that G was inte-

grable with square and later put  0. Keeping  finite, 

the fitting can be formulated as a minimization problem, 
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Since the last integral does not depend on the fitting pa-

rameters the problem can be reformulated as a search for 

the maximum of the first term taken with the opposite 

sign. As G enters this term linearly we can put now  0 

and perform integration. This leads to the merit function 
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Iterative Procedure 

Imposing the requirement that all derivatives of the 

merit function w.r.t. fitting parameters turn zero we can 
obtain the following set of equations (see [3] for details): 
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Please note that the first of these equations cannot be 
obtained by introducing weights in the definition (4).  

Figure 1: Average over 100 realizations beam size (top) 

and fraction of particles in the core (bottom) vs. fraction of 

particles in the halo obtained with  = 1 fixed during itera-

tions (blue dots) and with fitted   (red dots). The shad-

owed areas show the spread in these values. 

In principle parameter  can be excluded by plugging 
the last of Eqs. (9) into the first one, but then the control 
over its value will be lost: due to the statistical nature of 
the input data it may exceed 1 in the process leading to 
wrong results. So the loop over this parameter should be 
the outmost one if any. 

The iterations over the -matrix have a tendency to os-
cillate so the convergence can be accelerated by introduc-
ing some damping.  

Figure 1 shows the results of simulations with random-

ly generated 1D distributions of 2000 particles which are 

a superposition of two normal distributions: one with  = 1 (core) and the other with  = 3 (halo of relative 

intensity fhalo). Each point presents an average over 100 

seeds. Red color shows the results of iterations with vari-

able  while the blue color corresponds to iterations with  = 1. The shown  values in the latter case are obtained 

a posteriori using the last of Eqs. (9). 

It can be seen that inclusion of  in iterations noticea-

bly improves the halo suppression but introduces a larger 

spread in the results. In both cases the obtained   values 

are much closer to that for the core compared to simple 

r.m.s. value which for fhalo = 0.2 is 1/2=1.61. 

EMITTANCES FROM -MATRIX 

Known the -matrix we can not only find the normal 
mode emittances but also obtain information on the 

beta and dispersion functions. Taking the cue from 

Ref. [1] let us consider the matrix product 

S         (10) 

with S being the symplectic unity matrix 
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It can be shown [3] that matrix  has purely imaginary 

conjugate pairs of eigenvalues whose absolute values give 

the normal mode emittances.  

For eigenvectors belonging to the same normal mode m 

we can put  


 122 mm vv         (12)  

where asterisk denotes complex conjugation and impose 

the following normalization: 
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Then the coupled optics functions (called Mais-Ripken 
functions) can be found as [3] 
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Due to statistical fluctuations these functions may ex-
hibit cross-plane coupling which is absent in the underly-
ing dynamical system so that they should be used only for 
the normal mode identification and putting in the canoni-

cal order (x, y, t). 

Besides the beta-functions the effective dispersion 

functions can also be estimated as described in [3]. Re-

quiring the 3rd mode projection on time coordinate to be 

zero and taking ratio of its x-projection to -projection we 

get 

])()Im[(

])()Im[(

6555

1555

vv

vv


 

x
Dx

      (15) 

and similarly for Dy with index replacement 13. 

An example of application of the described algorithm 

for the analysis of the ionization cooling of muons can be 

found in [4]. It is also planned to use it in MADX-SC 

code for fitting the distribution of tracking particles [5]. 

APPENDIX 

We can use the described above method for computa-

tion of eigen-emittances to answer the often raised ques-

tion of how important it is to use canonical momenta 

instead of mechanical momenta. Let us assume that we 

have a distribution of particles in axisymmetric magnetic 

field Bz such that 
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with all other elements of the -matrix being zero (we 
consider here a 4D case). Obviously both normal modes 
have equal emittances 0 = p and beta-functions  = /p. 
Now, if we would use the mechanical momenta, the non-

zero covariance coefficients would be 
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we would obtain for eigen-emittances 
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Dependence of eigen-emittances on parameter K is 
shown in Fig. 2. For the matched beta-function value 
K = 1 emittances (18) differ by more than a factor of 
two from the correct values. However their product – the 
4D emittance – remains correct: 12=0

2. 
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Figure 2: Eigen-emittances with mechanical momenta 

used vs. normalized magnetic field strength. 
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