Author: Steszyn, A.N.
Paper Title Page
MOA4IO01 Performance of the Low Charge State Laser Ion Source in BNL 49
 
  • M. Okamura, J.G. Alessi, E.N. Beebe, M.R. Costanzo, L. DeSanto, S. Ikeda, J.P. Jamilkowski, T. Kanesue, R.F. Lambiase, D. Lehn, C.J. Liaw, D.R. McCafferty, J. Morris, R.H. Olsen, A.I. Pikin, R. Schoepfer, A.N. Steszyn
    BNL, Upton, Long Island, New York, USA
 
  In March 2014, a Laser Ion Source (LIS) was commissioned which delivers high brightness low charge state heavy ions for the hadron accelerator complex in Brookhaven National Laboratory (BNL). Since then, the LIS has provided many heavy ion species successfully. The induced low charge state (mostly singly charged) beams are injected to the Electron Beam Ion Source (EBIS) where ions are then highly ionized to fit to the following accelerator's Q/M acceptance, like Au32+. Last year, we upgraded the LIS to be able to provide two different beams into EBIS on a pulse-to- pulse basis. Now the LIS is simultaneously providing beams for both the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL). In the conference we present achieved performance and developed new techniques of the LIS.  
slides icon Slides MOA4IO01 [7.796 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOA4IO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB58 Cathode Puck Insertion System Design for the LEReC Photoemission DC Electron Gun 1021
 
  • C.J. Liaw, V. De Monte, L. DeSanto, K. Hamdi, M. Mapes, T. Rao, A.N. Steszyn, J.E. Tuozzolo, J. Walsh
    BNL, Upton, Long Island, New York, USA
  • K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. DOE.
The operation of LEReC is to provide an electron cooling to improve the luminosity of the RHIC heavy ion beam at lower energies in a range of 2.5-25 GeV/nucleon. The electron beam is generated in a DC Electron Gun (DC gun) designed and built by the Cornell High Energy Synchrotron Source Group. This DC gun will operate around the clock for at least two weeks without maintenance. This paper presents the design of a reliable cathode puck insertion system, which includes a multi-pucks storage device, a transfer mechanism, a puck insertion device, a vacuum/control system, and a transport scheme.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB58  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)