Author: Li, G.
Paper Title Page
MOPOB05 Tokamak Accelerator 76
 
  • G. Li
    ASIPP, Hefei, People's Republic of China
 
  Tokamak accelerator within plasma is analyzed to be implemented in existing machines for speeding the development of fusion energy with seeding fast particles from high current accelerators - the so-called two-component reactor approach [J. M. Dawson, H. P. Furth, and F. H. Tenney, Phys. Rev. Lett. 26, 1156 (1971)]. All plasma particles are heated at the same time by inductively-coupled power transfer (IPT) within an energy confinement time. This could facilitate the attainment of ignition in tokamak by forming high-gain high-field (HGHF) fusion plasma suggested in [Li. G., Sci. Rep.5, 15790 (2015)]. HGHF mechanism is validated by the flux-conserving process existed in discharges of tokamak plasma at normal operation with long pulses or at compression process within an energy confinement time. Differences between HGHF plasma and former unity-beta plasma are discussed. Tokamak as an accelerator could scale down the design capacity of fusion power plant by simply inserting in-vacuum vertical field coils (IVC) within its vacuum vessel, such as China Fusion Engineering Test Reactor (CFETR).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)