Author: Kaufman, J.J.
Paper Title Page
MOPOB61 Updates of Vertical Electropolishing Studies at Cornell with KEK and Marui Galvanizing Co. Ltd . 208
 
  • F. Furuta, M. Ge, T. Gruber, J.J. Kaufman, M. Liepe, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • H. Hayano, S. Kato, T. Saeki
    KEK, Ibaraki, Japan
 
  Cornell, KEK, and Marui Galvanizing Co. Ltd (MGI) have started new Vertical Electro-Polishing (VEP) R&D collaboration in 2014. MGI and KEK has developed their original VEP cathode named 'i-cathode Ninja'® which has four retractable wing-shape parts per cell for single-/9-cell cavities. One single cell cavity had processed with VEP using i-cathode Ninja at Cornell. Cornell also performed the vertical test on that cavity. We will present the details of process and RF test result at Cornell.  
poster icon Poster MOPOB61 [2.251 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB61  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB63 Impact of Cooldown Procedure and Ambient Magnetic Field on the Quality Factor of State-of-the-Art Nb3Sn Single-Cell ILC Cavities 215
 
  • D.L. Hall, M. Ge, J.J. Kaufman, M. Liepe, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: DOE
Single-cell Nb3Sn cavities coated at Cornell University have demonstrated quality factors of 1010 at 16 MV/m and 4.2 K in vertical tests, achieving the performance requirements of contemporary modern accelerator designs. In this paper, we present results demonstrating the impact of the cooldown procedure and ambient magnetic fields on the cavity's ability to achieve these quality factors and accelerating gradients. The impact of the magnetic fields from thermoelectric currents, generated by thermal gradients across the cavity during cooldown, are shown to be equivalent to the impact of magnetic fields trapped from ambient sources. Furthermore, the increase in the residual surface resistance due to trapped magnetic flux, from both ambient sources and thermoelectric currents, is found to be a function of the applied RF magnetic field amplitude. A hypothesis for this observation is given, and conclusions are drawn regarding the demands on the cooldown procedure and ambient magnetic fields necessary to achieve quality factors of 1010 at 4.2 K and 16 MV/m or higher.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB63  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)