Paper | Title | Page |
---|---|---|
WEPOA18 | Experimental Studies of Beam Collimation System in the Fermilab Booster | 732 |
|
||
A two-stage collimation (2SC) system was installed in Fermilab Booster around 2004 and consists of 2 primary collimators (PrC), one for each of the horizontal and vertical planes and 3 secondary collimators (SC) each capable of acting in both planes. Presently, only SC are used as the single-stage collimation (1SC). Part of the Fermilab Proton Improvement Plan (PIP) includes a task to test 2SC for Booster operations. In this paper we describe preparatory steps to fix SC motion issues and installation of a 380μm thick aluminum foil PrC and post-processing software for beam orbit and beam loss measurements. The initial experimental results for 2SC in the vertical plane are also presented. The tuning of 2SC system was performed using fast loss monitors allowing much higher time-resolution than existing BLMs. Analysis of losses and beam transmission efficiency allow for the comparison of 1SC and 2SC schemes. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA18 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOA20 | Numerical Simulations of Collimation Efficiency for Beam Collimation System in the Fermilab Booster | 735 |
|
||
A two-stage beam collimation (2SC) system has been installed in the Fermilab Booster more than 10 years ago. It consists of two primary collimators (horizontal and vertical) and three 1.2m-long secondary collimators. The two-stage collimation has never been used in Booster operations due to uncontrolled beam orbit variations produced by radial cogging (it is required for beam accumulation in Recycler). Instead, only secondary collimators were used in the single-stage collimation (1SC). Recently introduced magnetic cogging resulted in orbit stabilization in the course of almost entire accelerating cycle and created a possibility for the 2SC. In this paper, the 2SC performance is evaluated and compared the 1SC. Several parameters characterizing collimation efficiency are calculated in order to compare both schemes. A combination of the MADX and MARS15 codes is used for proton tracking in the Booster with their scattering in collimators being accounted. The dependence of efficiency on the primary collimators foil thickness is presented. The efficiency dependence on the proton energy is also obtained for the optimal foil. The feasibility of the 2SC scheme for the Booster is discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA20 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOA15 | Adaptive Space Charge Calculations in MADX-SC | 1126 |
|
||
Funding: Work supported by Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the U.S. DOE Since a few years MAD-X allows to simulate beam dynamics with frozen space charge à la Basseti-Erskine. The limitation of simulation with a fixed distribution is somewhat overcome by an adaptive approach that consists of updating the emittances once per turn and by recalculating the Twiss parameters after certain intervals, typically every 1,000 turns to avoid an excessive slowdown of the simulations. The technique has been benchmarked for the PS machines over 800, 000 turns. MADX-SC code developments are being discussed that include the re-introduction of acceleration into MAD-X and more advanced beam σ calculations that will avoid code interruptions for the Twiss parameters calculation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA15 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |