Paper | Title | Page |
---|---|---|
TUPOB21 | MuSim, A Graphical User Interface for Multiple Simulation Codes | 535 |
|
||
MuSim is a user-friendly program designed to interface to many different particle simulation codes, regardless of their data formats or geometry descriptions. It presents the user with a compelling graphical user interface that includes a flexible 3-D view of the simulated world plus powerful editing and drag-and-drop capabilities. All aspects of the design can be parameterized so that parameter scans and optimizations are easy. It is simple to create plots and display events in the 3-D viewer, allowing for an effortless comparison of different simulation codes. Simulation codes: G4beamline 3.02, MCNP 6.1, and MAD-X; more are coming. Many accelerator design tools and beam optics codes were written long ago, with primitive user interfaces by today's standards. MuSim is specifically designed to make it easy to interface to such codes, providing a common user experience for all, and permitting the construction and exploration of models with very little overhead. For today's technology-driven students, graphical interfaces meet their expectations far better than text-based tools, and education in accelerator physics is one of our primary goals. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB21 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOB35 | Progress on Skew Parametric Resonance Ionization Cooling Channel Design and Simulation | 565 |
|
||
Funding: This work was supported in part by U.S. DOE STTR Grant DE-SC0005589. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Skew Parametric-resonance Ionization Cooling (Skew PIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. Properties of the linear beam dynamics have been previously reported and good agreement exists between theory, analytic solutions, and simulations. Progress on aberration compensation in the coupled correlated optics channel is presented and discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB35 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOB38 | Implementation of MAD-X into MuSim | 575 |
|
||
Funding: This work is supported by Muons, Inc. MuSim is a new and innovative graphical system that allows the user to design, optimize, analyze, and evaluate accelerator and particle systems efficiently. It is designed for both students and experienced physicists to use in dealing with the many modeling tools and their different description languages and data formats. G4beamline [1] and MCNP [2] have been implemented into MuSim in previous studies. In this work, we implement MAD-X [3] into MuSim so that the users can easily use the graphical interface to design beam lines with MAD-X and compare the modeling results of different codes. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB38 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOA54 | Simulation of a Skew Parametric Resonance Ionization Cooling Channel | 813 |
|
||
Skew Parametric-resonance Ionization Cooling (Skew-PIC) is designed for the final 6D cooling of a high-luminosity muon collider. Tracking of muons in such a channel has been modeled in MAD-X in previous studies. However, the ionization cooling process has to be simulated with a code that can handle matter dominated beam lines. In this paper we present the simulation of a Skew-PIC channel using G4beamline. We implemented the required magnetic field components into G4beamline and compare the tracking of muons by the two different codes. We optimize the cooling channel and present the muon cooling effect in the Skew-PIC channel for the first time. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA54 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |