Author: Baffes, C.M.
Paper Title Page
MOPOB25 The Use of KF Style Flanges in Low Particlulate Applications 124
 
  • K.R. Kendziora, J.J. Angelo, C.M. Baffes, D. Franck, R.J. Kellett
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermilab, Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy
As SCRF particle accelerator technology advances the need for 'low particulate' and 'particle free' vacuum systems becomes greater and greater. In the course of the operation of these systems, there comes a time when vari-ous instruments have to be temporarily attached for diag-nostic purposes: RGAs, leak detectors, and additional pumps. In an effort to make the additions of these instru-ments easier and more time effective, we propose to use KF style flanges for these types of temporary diagnostic connections. This document will describe the tests used to compare the particles generated using the assembly of the, widely accepted for 'particle free' use, conflat flange to the proposed KF style flange, and demonstrate that KF flanges produce less particles.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB25  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA19 50-MeV Run of the IOTA/FAST Electron Accelerator 326
 
  • D.R. Edstrom, C.M. Baffes, C.I. Briegel, D.R. Broemmelsiek, K. Carlson, B.E. Chase, D.J. Crawford, E. Cullerton, J.S. Diamond, N. Eddy, B.J. Fellenz, E.R. Harms, M.J. Kucera, J.R. Leibfritz, A.H. Lumpkin, D.J. Nicklaus, E. Prebys, P.S. Prieto, J. Reid, A.L. Romanov, J. Ruan, J.K. Santucci, T. Sen, V.D. Shiltsev, Y.-M. Shin, G. Stancari, J.C.T. Thangaraj, R.M. Thurman-Keup, A. Valishev, A. Warner, S.J. Wesseln
    Fermilab, Batavia, Illinois, USA
  • A.T. Green
    Northern Illinois Univerity, DeKalb, Illinois, USA
  • A. Halavanau, D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • J. Hyun
    Sokendai, Ibaraki, Japan
  • P. Kobak
    BYU-I, Rexburg, USA
  • W.D. Rush
    KU, Lawrence, Kansas, USA
 
  Funding: Supported by the DOE contract No.DEAC02-07CH11359 to the Fermi Research Alliance LLC.
The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (including a new Martin-Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.
 
poster icon Poster TUPOA19 [4.636 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA19  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA15 Installation Progress at the PIP-II Injector Test at Fermilab 722
 
  • C.M. Baffes, M.L. Alvarez, R. Andrews, A.Z. Chen, J. Czajkowski, P. Derwent, J.P. Edelen, B.M. Hanna, B.D. Hartsell, K.R. Kendziora, D.V. Mitchell, L.R. Prost, V.E. Scarpine, A.V. Shemyakin, J. Steimel, T.J. Zuchnik
    Fermilab, Batavia, Illinois, USA
  • A.L. Edelen
    CSU, Fort Collins, Colorado, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy
A CW-compatible, pulsed H superconducting linac 'PIP-II' is being planned to upgrade Fermilab's injection complex. To validate the concept of the front-end of such a machine, a test accelerator (The PIP-II Injector Test, formerly known as "PXIE") is under construction. The warm part of this accelerator comprises a 10 mA DC 30 keV H ion source, a 2m-long LEBT, a 2.1 MeV CW RFQ, and a 10-m long MEBT that is capable of creating a large variety of bunch structures. The paper will report on the installation of the RFQ and the first sections of the MEBT and related mechanical design considerations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA15  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)