

Nanopositioning at Sirius/LNLS beamlines

a review and future opportunities

November 9th, 2023

Renan Geraldes renan.geraldes@lnls.br

Outline

- Introduction
- Motivation
- Commercial Scenario
- Development Framework
- Examples
- Conclusions & Perspectives

Outline

Introduction

Motivation

- 1. Short Biography
- 2. The CNPEM, the LNLS and Sirius
- Commercial Scenario
- Development Framework
- Examples
- Conclusions & Perspectives

1. Short Biography

- Bachelor in Engineering Physics (UFSCar, Brazil)
- Master in Physics w/ emphasis in Scientific Instrumentation (CBPF, Brazil)
- PhD in Mechatronics (TU/e, The Netherlands)
- 14 years at the LNLS (UVX and Sirius)
 - Head of the Precision Engineering and Mechatronics group (MEP)

Cryogenic X-ray Mirror Systems

The TARUMÃ nanoprobe

2. The CNPEM and the LNLS

2. 4th Generation Storage Rings Worldwide 🖾 📿 CNPEM

				MAX IV			
		APS-U		Energy	3.0 GeV		
		Energy	6.0 GeV	Circumference	528 m		
		Circumference	1103 m	Natural emittance	330 pm.rad		
		Natural emittance	42 pm.rad	Current (top-up)	500 mA		
		Current (top-up)	200 mA	and the second s	a state of the sta		25
S erence emittance (top-up)	3.0 GeV 518 m 250 pm.rad 350 mA					2024/2 HEPS	025
6			ESRF- Energy	EBS 6.0 Ge		Energy Circumference Natural emittance Current (top-up)	6.0 GeV 1360 m < 60 pm.rad 200 mA
ect goa d for cohe iance har iopy and ng the IR	Is erence in tender X-ra d X-rays for Imaging and UV science	Campina:	s Circumf Natural Current	erence 844 m emittance 133 pm (top-up) 200 mA	rad		

SIRIUS

Energy Circumf Natural Current

Sirius Proj

- Optimized 0
- High-brill 0 Spectrosc
- Maintaini 0 programs

7

2. Sirius Beamlines – Phase 1

2. Sirius Beamlines – Phase 1

https://www.lnls.cnpem.br/beamlines/

2. Sirius Beamlines – Phase 2 and Orion

LNLS

CNPEM

Outline: Nanopositioning

- Introduction
- Motivation: Why do we need it?
- Commercial Scenario
- Development Framework
- Examples
- Conclusions & Perspectives

- **1. New light sources**
- 2. Beam delivery
- 3. Experimental Methods

1. New-generation light sources

- Increased brilliance/flux
 - Smaller sources → Higher stability
 - **Higher flux** → Faster processes
- Increased coherence fractions
 - Coherence-based methods (ptycho)
 - Higher stability requirements

UVX	Max. Intensity = $1.7e+09$ ph/s/ 0.1% /mm ²
	Window: 6.0 x 0.4 mm ²
Sirius	Max. Intensity = 6.6e+16 ph/s/0.1%/mm ²
	Window: 6.0 x 0.4 mm ²

2nd Generation UVX to 4th Generation Sirius at the LNLS

2. Beam Delivery

2.1. Mirrors

2.2. Double-Crystal Monochromators

2.3. Plane-Grating Monochromators

2.4. KB Mirrors

2.1. Mirrors

2.2. Double-Crystal Monochromators

ϲͷϷͼϺ

2.3. Plane-Grating Monochromators

Veritas @ Max IV

Figure 1

Schematic picture of the geometry of the collimated plane grating monochromator. M2 denotes the mirror and PG the plane grating. The light comes in from the left and exits towards the slit to the right. The incoming and outgoing beams are parallel to each other.

Figure 22

Veritas PGM in closed loop was standing still for one week while the energy was sampled. Mid-week, the cooling water was turned on increasing the noise from 3 meV to 7 meV.

(doi:10.1107/S1600577520000843)

Figure 7

The sampled angular noise in encoder position converted to energy for small energy steps for different $c_{\rm ff}$ values at Veritas. Each step is 5 meV and 10 s at 400 eV giving a resolution of 80000. The system behaviour is better at higher $c_{\rm ff}$ values. The cooling water is turned off.

Angular stability, affecting energy resolution!

2.4. KB (Kirkpatrick-Baez) Systems

3. Experimental Methods

Scanning Microscopes

- 2D images (STXM, Ptychography, Fluorescence)
- 3D Tomography

3. Experimental Methods: Ptycho-Tomography

Velociprobe @ APS

(doi: 10.1063/1.5103173)

3. Experimental Methods: Ptycho-Fluoro-Tomography

Bionanoprobe @ APS

(doi: 10.1126/sciadv.aau4548)

(doi: 10.1073/pnas.1413003112)

Outline: Nanopositioning

- Introduction
- Motivation
- Commercial Scenario: What is out there?
- Development Framework
 1. Commercial Systems
- Examples

- 2. Standards and Procedures
- Conclusions & Perspectives

1. Commercial Systems

- 1.1. Positioning Systems
- 1.2. Complete Instruments

1.1. Positioning Systems

and many others...

22

1.2. Complete Instruments

and many others...

2. Standards and Procedures

2.1. Linear Positioning Systems: ASME B5.64

2.2. Rotary Systems: Spindle Metrology

*Comparing complete instruments being very

challenging.

CNPEM 2.1. Linear Positioning Systems: ASME B5.64

ASME B5.64

- Characterization Guide
- Performance Tests
- Unified Terminology
- Statistics and Correction Methods

Greg Vogl is an Engineer in Production Systems Group @ NIST Jimmie Miller is Chief Engineer of

Steve Ludwick is Director of Sustaining Engineering @ Aerotech

Center for Precision Metrology @ UNCC

Axel Grabowski is Head of R&D of Sensor Technologies Department @ Physik Instrumente (PI)

ASPE 2022

2.1. Linear Positioning Systems: ASME B5.64

In-Position "Jitter"

- Setup/assembly
- Sensor type
- Acquisition (period, filters, etc.)
- Uncertainty Analysis
- Data presentation

Move and Settle

- In-position remarks +
- Travel distance
- Settling Criteria

2.1. Linear Positioning Systems: ASME B5.64

Incremental and Minimum Step Motion Test

- In-position remarks +
- Step size
- Uni/bidirectional
- Number of steps
- Step reversal error
- Minimum incremental motion

Corrections

- Thermal drift
- Abbé errors (angle meas. and compensation)
- Uni/bidirectional deviation
- System reversal error
- Linearity correction methods

[Credits: Greg Vogl, Steve Ludwick, Axel Grabowski, Jimmie Miller]

2.2. Rotary Systems: Spindle Metrology

*Tests using capacitive probes

Precision Spindle Metrology (by Erik Marsh)

- Metrology concepts
- Test Instrumentation
- Data acquisition
- Data analysis

Erik Marsh

https://www.ibspe.com/machinequalification/spindle-analyzer-systems

Outline: Nanopositioing

- Introduction
- Motivation
- Commercial Scenario
- Development Framework: How can we think about it?
- Examples
- Conclusions & Perspectives

- 1. Systems Engineering (SE)
- 2. Design Principles
- 3. Integration

1. Systems Engineering

- Requirements engineering (Problem Domain vs Solution Domain)
- Modularization (Product Breakdown)
- Functional Breakdown
- Competence Management
- Error Budgeting
- Modeling

Meant to increase efficiency and reduce redesign/rework!

https://hightechsystems.nl/artikel/kijk-buitende-grenzen-van-je-eigen-koninkrijkje/

2. Design Principles

- 2.1. References
- 2.2. The 11 Design Principles of High-Precision Machines
- 2.3. Mechanical
- 2.4. Dynamics
- 2.5. Thermal

2.1. References

2.2. The 11 Design Principles

Design of High Precision Machines:

- 1. Structure (symmetry, stiffness, dynamics, damping)
- 2. Kinematic/Semi-kinematic design (isostatic)
- 3. Abbé Principle (metrology)
- 4. Direct measurement
- 5. Metrology frames (isolated from force frames)
- 6. Bearings
- 7. Transmission drives
- 8. Thermal effects
- 9. Control

10. Error Budgeting (static, dynamic, thermal)

11. Error Compensation

*From Cranfield Precision Engineering Short Course (2014)

2.3. Mechanical: Design for Stiffness

Parallel Arrangement

 k_2

Series Arrangement

2.3. Mechanical: Control of Degrees of Freedom (DoF)

Overconstraining = deformation

Restriction of Degrees of Freedom

by single-point contact:

- Hertz contact theory
- Friction/preload based
- Limited stiffness

2.3. Mechanical: Bearings

and many others...

Ball Bearings

Needle Bearings

Roller Bearings

[THK]

[Professional Instruments]

Needle Linear Guides

Ball Linear Guides

Flat Air Bushings

Air Bearing Spindles

Critical aspects

- Stiffness ٠
- Motion errors ٠
- Lubrication ٠
- Friction •
- Preload ٠
- Noise levels ٠
- Non-linearities •
- Vacuum compatibility
- Temperature compatibility ٠

37

2.3. Mechanical: Flexural Mechanisms

PROs

- Predictable behavior/modeling
- Less dependent of friction
- Higher repeatability and resolution (reduced friction effects)
- Free of lubrication
- Lower (or negligible) level of maintenance

CONs

- Limited motion range
- Limited load capacity
- Non-linear behavior

2.3. Mechanical: Material Properties

Parameters of interest:

- Elastic modulus
- Yield strength
- Density
- Vacuum compatibility 40

2.3. Mechanical: Actuators

and many others...

Critical aspects

- Actuation principle
- Force levels
- Actuation range
- Noise levels
- Non-linearities
- Vacuum compatibility
- Temperature compatibility

Servo Motors

41

2.3. Mechanical: Sensors

and many others...

[Lion/IBS]

[Renishaw]

Readhead window

Laser Interferometers

Critical aspects

- Absolute vs Relative
- Measurement range ٠
- Communication protocol
- Measurement bandwidth ٠
- Noise levels
- Non-linearities
- Vacuum compatibility
- Temperature compatibility

42

Autocollimator

[Möller Wedel]

Capacitive Probes

2.3. Mechanical Metrology: Abbé

E.g.: • L = 25 mm• $\theta = 1 \mu rad$ • $\epsilon = 25 nm!$

Options:

- Reduction of lever-arms as much as possible;
- Measurement of additional DoFs;
- Calibration.

2.3. Mechanical Metrology: Angular Measurements

$$\theta = x_e/r$$

***Options:** use of multiple heads, calibration, etc.

45

f [Hz]

E.g.:

- m1: lens (50 Hz)
- m2: sample (10 Hz)

2.5. Thermal: Fundamentals

Stead-state approximation:

 $P = g \cdot \Delta T$

Expansion approximation:

 $\Delta L = L_0 \cdot \alpha \cdot \Delta T$

Critical aspects:

- Heat sources: beam, motors, sensors, environment, people ...
- Heat transfer mechanisms: conduction, convection and radiation
- Thermal expansion effects
- Measurements

2.5. Thermal: Fundamentals

Expansion approximation:

$$\Delta L = L_0 \cdot \alpha \cdot \Delta T$$

E.g.:
L = 25 mm
ΔT = 0.1 K

• $\alpha = 20 \ \mu m/m. K$ (Al) $\Delta L = 50 \ nm!$

2.6. Thermal: Material Properties

Bending Sensitivity

Parameters of interest:

- Coefficient of thermal expansion (α)
- Thermal conductivity (λ)
- Coefficient of heat capacity (c_p)
- Density (ρ)

50

(doi: 10.1007/s10704-020-00487-7) $[\lambda/(\rho \cdot c_p)$ (temperature wavefront propagation)] •

3. Beamline Integration

3.1. Double-Crystal Monochromator

3.2. Scanning Microscopes

2.6. Integration: DCM (spectroscopy)

Critical aspects:

- Multiple instruments
- Master-follower

architecture

- Different dynamic performances
- Different protocols
- kHz rates
- Synchronization
- Matching trajectories
- Control complexity

(doi:10.1107/S1600577522010724)

2.6. Integration: Scanning Microscopes

Critical aspects:

- Multiple instruments
- Multiple protocols
- Central orchestrator
- kHz rates
- Synchronization
- Control complexity
- Trajectory optimization
- Software complexity
- Data storage
- Data processing

Outline: Nanopositioning

- Introduction
- Motivation
- Commercial Scenario
- Development Framework
- Examples at Sirius
- Conclusions & Perspectives

1. HD-DCM

2. Mirrors

3. Nanoprobes

1. The HD-DCM

1. DCM Architecture Comparison

1. The HD-DCM Project Timeline

1. The HD-DCM Architecture

1. The HD-DCM Dynamic Error Budgeting

1. The HD-DCM Beamline Integration

2. Mirror Systems

2. (Quasi) Isostatic Mirror Fixation

qbeam

 $q_{heaters}$

2. Mirror Manufacturing and Fixation Effects

Beam Profile Simulations

Gravity

Thermal

Bolt tightning

(doi: 10.1364/sxray.1991.the3) (doi: 10.18429/JACoW-MEDSI2018-WEPH31)

- Mirror polishing
- Manufacturing
 limitations
- 65

2. Mirror Isostatic Compliant Mechanism

СИРЕШ

LNLS

3. Nanoprobes3.1. TARUMÃ3.2. SAPOTI

3. The CARNAÚBA Beamline

3.1. TARUMÃ: Overview

Techniques:

- □ XRD (Diffraction)
- □ XAS (Absorption)
- □ XRF (Fluorescence)
- □ XEOL (Luminescence)
- Ptycho-CDI
- □ (Ptycho-)Bragg-CDI
- □ Tomography

- 1. Sample setup;
- 2. XYZ piezo stage;
- 3. Rotary stage;
- 4. Fluorescence detectors; 8.
- 5. Transmission area detector;
- 6. Diffraction area detector;
- 7. Optical microscopes;
 - . XEOL optics;

- 9. Crystal analyzer;
- 10. Pick-and place gripper;
- 11. KB vessel exit port.

3.1. TARUMÃ: Overview

3.1. TARUMÃ: Exactly-constrained KB Mirrors 🖾 🕻

*Pitch modes > 1 kHz

(doi: 10.18429/JACoW-MEDSI2020-TUOB01)

CNPEΜ

3.1. TARUMÃ: Exactly-constrained KB Mirrors 🖾 🖸 CNPEM

*Pitch modes > 1 kHz

(doi: 10.18429/JACoW-MEDSI2020-TUOB01)

Cryogenic Setup

Rhizomicrocosm

Perovskite Setup

(doi: 10.1016/j.elspec.2023.147340)

3.1. TARUMÃ: Cryogenic Setup

Cryogenic Setup

(doi: 10.18429/JACoW-MEDSI2020-WEPC02) (doi: 10.1088/1742-6596/2380/1/012108)

3.1. TARUMÃ: Image Resolution

Fig. 20. Ptychography reconstruction of the Siemens star. (a) Zoom on the central portion of the image in Fig. 19a, showing the star's finest structures, (b) FSC analysis and comparison to the threshold criteria evaluated with PyNX [89].

3.2. SAPOTI: Overview

3.2. SAPOTI: Sample Stage Specifications

Parameter	Value
Vacuum level	~ 1e-9 mbar
Sample Temperature	< 100 K
2D mapping range (XY)	+/- 1.5 mm
2D mapping stab. (XY)	1 nm RMS
2D mapping acc. (XY)	< 10 nm
2D mapping repeat. (XY)	5 nm
Mapping velocity	≤ 50 µm/s
Main rotation range (Ry)	220°
Main rotation stab. (Ry)	2 µrad
Main rotation acc. (Ry)	100 µrad
Main rotation repeat. (Ry)	10 µrad
2D mapping stab. (XI) 2D mapping acc. (XY) 2D mapping repeat. (XY) 2D mapping velocity Main rotation range (Ry) Main rotation stab. (Ry) Main rotation acc. (Ry) Main rotation repeat. (Ry)	1 nm RMS < 10 nm 5 nm ≤ 50 μm/s 220 2 μrad 100 μrad 10 μrad

3.2. SAPOTI: Sample Stage Motion (XYZ)

8x speed

Trajectory Optimization (XY mapping)

Outline: Nanopositioning

- Introduction
- Motivation
- Commercial Scenario
- Development Framework
- Examples
- Conclusions & Perspectives

Conclusions

- Design principles and different technologies must be known for optimized solutions;
- Holistic and systemic design approaches should be considered for ultimate performances;
- Predictive design framework and modeling tools can improve design efficiency and assertiveness;
- New-generation beamlines tend to push toward industry-like high-end systems and throughput;
- People training and management may prove to be one of the critical bottlenecks in face of such complex systems.

Perspectives

- High-end mechatronics is still at an early stage within the beamline environment, but there is room for a quick evolution;
- Full beamline (IDs, slits, mirrors, monochromators, sample, detectors) coordination and calibration in motion and thermal aspects may be required for some ultimate high-performance experiments (e.g. spectroscopy);
- Model-based systems engineering (MBSE) shows great potential in handling ever more complex systems.

Thank you!

Renan Geraldes renan.geraldes@lnls.br

