

A Novel Coating to Avoid Corrosion Effect and Vibration Coupling Between Eutectic Gallium-Indium Alloy and Heat Sink Metal for X-Ray Optics Cooling

Tian He^{1,2}, Shanzhi Tang^{1,2,*}, Haihan Yu^{1,2}, Zina Ou¹, Zhongrui Ren¹, Ming Li^{1,2}, Weifan Sheng^{1,2}, Wenchao Liu^{1,2}, Ruiying Liao¹, Jiale Yang^{1,2}, and Xiaomeng Zhang^{1,2} (1) Institute of High Energy Physics, Chinese Academy of Sciences, China (2) University of Chinese Academy of Sciences, China (*) Author to whom correspondence: <u>tangsz@ihep.ac.cn</u>

Abstract	Experiment		Validation And Fabrication
Although the vibration decoupling method	Six settings	Two analytical methods	Of The Proposal Coating
based on eutectic gallium-indium (EGaIn) alloy performs excellent in suppressing parasitic vibration caused by the cooling medium and pipes of X-ray optics ^{1,2,3} the	 Five coatings W Mo TiAlCrN Ni Cu 	Microstructure Optical microscope (OM) Scanning electron microscope (SEM)	Prepared by magnetron sputtering Ten months
corrosion of EGaIn alloy to the heat sink metal still results in the solidification and the vibration decoupling failure. ^{4,5} A novel anti-		Phase composition X-ray diffraction (XRD)	

corrosion coating based on tungsten(W) is proposed. Through the analysis of the microstructure and the chemical composition after heating for 36 hours at 250°C, there is no obvious evidence that W is corroded which is more effective than the widely used coating of nickle(Ni). And the W coating by using magnetron sputtering has been implemented for feasibility validation. Its corrosion resistance mechanism has also been analyzed.

X-Ray Optics Cooling Based On EGaln Alloy

The bulge connected with the cooling pipe is immersed into the grove which is machined on the mirror and filled with EGaIn alloy. The vibration is cut off and suppressed. At the same time, the heat on the mirror transfers to the bulge connected with the pipe through EGaIn alloy. It can supprese the vibration and cool the optics . It has the advantages of vibration decoupling and no clamping stress.

FIG. 3. Sample with EGaIn alloy. (a)substrate sample (b)coating sample

▲	
Group	Condition
Group 1	150°C-6h
Group 2	200°C-6h
Group 3	250°C-6h
Group 4	250°C-12h
Group 5	250°C-18h

Group 6

250°C-36h

TABLE I. Experimental settings.

Results And Analysis

Figure 4 is the cross-sectional corrosion observation view of the substrate in different conditions(Cu, Ni, W).

- **Cu:** Adhesion \rightarrow Serious pit \rightarrow Serious void layer
- \succ Ni: Nothing \rightarrow Slight pit \rightarrow Slight void layer

W: No obvious pit or adhesion

Group 1(150°C-6h) Group 2(200°C-6h) Group 3(250°C-6h) Group 6(250°C-36h)

FIG. 7. Sample with EGaIn alloy. (a)substrate sample (b)coating sample

The result is

consistent with experiments.

Conclusion And Discussion

Vibration decoupling failure mechanism is described.

W is validated as a better coating for vibration decoupling from microstructure and phase composition.

FIG. 1. Vibration decouplincg cooling.

The reaction will reduce gallium in EGaIn alloy which will cause the increasing of melting point of the alloy from 15.5°C(In: 24.5wt%, Ga: 75.5wt%).The alloy will be solidified if the melting point exceeds operating temperature (about 22°C), which results in a rigid connection and vibration decoupling failure. Ni coating is applied to arrest corrosion, but the alloy still cures into paste after a period of time to leading to the interface stiffening and the parasitic vibration effect.

- The feasibility of W coating prepared by magnetron sputtering is implemented.
- The corrosion resistance mechanism can be further analyzed in order to explore a better method.
- The vibration decoupling after coating optimization can be further compared and analyzed by FEA.

Refferences

- 1. Zhang, Lin, et al. "Optimizing X-Ray Mirror Thermal Performance Using Matched Profile Cooling." *Journal of Synchrotron Radiation*, 2015.
- Cocco, Daniele, et al. "Adaptive Shape Control of Wavefront-Preserving X-Ray Mirrors with Active Cooling and Heating." *Optics Express*, 2020.
- Deng, Yueguang, and Jing Liu. "Hybrid Liquid Metal–Water Cooling System for Heat Dissipation of High Power Density Microdevices." Heat and Mass *Transfer*, 2010. 4. Norkett, J. E., et al. "A Review of Liquid Metal Embrittlement: Cracking Open the Disparate Mechanisms." Metallurgical and Materials Transactions A, 2021. Barbier, F., and J. Blanc. "Corrosion of Martensitic and Austenitic Steels in Liquid Gallium." Journal of Materials Research, 1999. 6. Hu, Xinyu, et al. "Wetting Behavior of Gallium-Based Room Temperature Liquid Metal (LM) on Nanosecond-Laser-Structured Metal Surfaces." Surfaces and Interfaces, 2022. Nicolas, Josep, et al. "A Versatile Adaptive Optics System for Alba Beamlines." Synchrotron Radiation News, 2022. Tang, Shanzhi, et al. "A Novel Coating to Avoid Corrosion Effect between Eutectic Gallium-Indium Alloy and Heat Sink Metal for X-Ray Optics Cooling." Review of Scientific Instruments, 2022.

