

MECHANICAL DESIGN AND MANUFACTURE OF ELECTROMAGNETS IN HEPS STORAGE RING

L. Wu[†], C. H. Li, S. Y. Chen, S. Yang, Y. D. Xu IHEP, Beijing, China wulei@ihep.ac.cn

Abstract

The HEPS storage ring comprises 48 7BA (seven-bend achromat) cells. There are 37 independent magnets in every cell, of which 5 dipoles are permanent magnets and the rest of magnets are all electromagnets including quad-rupoles, D-Q(dipole-quadrupole) combined magnets, sextupoles, octupoles and corrector magnets. These electromagnets with small aperture and high magnetic field gradient should achieve high machining and assembly precision. In October 2023, all storage ring electroma gnets manufacturing have been completed. This poster mainly introduces the mechanical design, processing and assembly, and the manufacturing issues in the machinin g period.

HEPS storage ring: 48 7BA cells (24 super-periods) Circumference 1360.4 m

37 independent magnets

5 dipole

14 quadrupoles 2 octupoles

Design & manufacture time:

 $2019.9-2023.10 \sim 4$ years

Characteristics:	Magnet	Section size	Yoke length /mm	Processing	Aperture/	Pole	Others
	type	/mm×mm		method	mm	space/mm	
Small aperture, high magnetic gradient, high precision, compact layout	Type I	510×510	180(QD2),201(QF2,QF1/6odd),	Stacking	26	11	
			245(QF1/6even),260(QD5),	laminations			
Maching tolerance			327(QD3/6)				
▷ Laminated magnets: pole space $\leq \pm 0.03$ mm magnet lenth $\leq \pm 0.25$ mm	Type I+	540×540	180(QD1/8odd),192(QD1/8even), 374(QF3/4)	Stacking laminations	26	11	Correction coil
> Machining magnets: pole space $\leq \pm 0.02$ mm magnet lenth $\leq \pm 0.05$ mm	Type II	510×510	180(QD7),201(QF5), 260(QD4)	Milling&EDM	26	11	Light channel
QUALITY CONTROL MEASURES	ABF1/4	336×336	180	Milling&EDM	30	11	
Material	ABF2/3	480×480	580	Stacking laminations	30	11	Light channel
Laminations:mechanical blending&magnetic blending.	BD1/2	640×640	1040	Stacking laminations	45	9	
DT4 plates: a magnet type=same furnace;magnetic excitation test&annealing	SD1/4	410×414	304	Milling	32	11.6	Correction coil
Pole accuracy	SF1/2	400×402	318	Milling&EDM	26.6	8	Light
Laminations: punching & stacking precision;							channel
pole profile toleranc&yoke mating surface sraightn:≤0.01mm;	SD2/3	450×464	350	Milling&EDM	26.6	8	Correction coil
monitor positioning accuracy of the stacking mold.	OCT1/2	500×500	254	Milling&EDM	30	7.2	Correction
Machining : milling&EDM tolerance< 0.02mm:one-time clamping.			00 न			2.1	coil
	FC1/2/	300×300	98.7	Stacking		31	
Repeatability Accuracy	3/4			laminations			

Reasonably arrange the cylindrical pins; use the pole clamps to fix the pole; control the bolt torque $(60-80N \cdot m)$ and bolting sequence (diagonally).

MAGNET DESIGN AND MANUFACTURING ISSUES

Filling Magnetic Material

Add magnetic material to

improve working current.

Optimize temperature switch

Switch distribution close to the pole:

sextupole($36 \pm 3^{\circ}$ C);quadrupole($43 \pm 3^{\circ}$ C)

Dowel installation

Split baseplates

Downhand welding & robot welding to reduce distortion.

pre-installed dowel; Confirm mounting hole positions remove upper half yoke; when milling the bottom surface. install correction coils.

Magic finger: A fast and effective method of magnetic field harmonic compensation, a remedial measure.

Fixed by pole clamp, adjusted in the magic finger groove.

- The qualified rate of lamination magnets is high. Most don 't need a magic finger to qualify.
- Some machining magnets need to use magic finger to qualified:(eg BD1/2~16%, QD7~48%,QF5~64%).

Reason:saturation of the magnetic properties of yoke. The number of magic fingers used per magnet is about 1-3.

CONCLUSION

Thanks to the efforts of magnet physicts, mechanical engineers and suppliers, HEPS magnet manufacturing is generally efficient and successful. All the electromagnets manufacturing of HEPS storage ring have been completed. Magnetic measurement and installation are being carried out. Some experiences and lessons have been obtain ed in mechanical design and processing.