Author: Zhou, A.Y.
Paper Title Page
TUPYP022 The Development and Application of Motion Control System for HEPS Beamline 61
 
  • Z.Y. Yue, X.B. Deng, Z.H. Gao, G. Li, Y. Liu, C.X. Yin, D.S. Zhang, Q. Zhang, A.Y. Zhou
    IHEP, Beijing, People’s Republic of China
 
  In synchrotron radiation facilities such as the High Energy Photon Source (HEPS) beamline, thousands of motorized actuators are equipped on different optical devices, such as K-B mirrors, monochromator and transfocators, in order to acquire the specified properties of X-ray. The motion control system, as a part of the ultra-precision mechatronics devices, is used to precison positioning control, which not only has ability to realize basic motion functions but also can handle complex motion control requirements. HEPS has developed a standardized motion control system(MCS) for synchrotron radiation applications. In this paper, The structure of hardware and software of MCS will be presented, and some applications are demonstrated in detail.  
poster icon Poster TUPYP022 [0.847 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP022  
About • Received ※ 30 October 2023 — Revised ※ 03 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 12 April 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPYP038 A Design of an X-Ray Pink Beam Integrated Shutter for HEPS 85
 
  • S. Liu, Q. Han, G. Mo, A.Y. Zhou
    IHEP, Beijing, People’s Republic of China
 
  The main function of the shutter is to accurately control the exposure time of the sample so that the sample as well as the detector can be protected. In order to cover the high thermal load and high energy working environment, we designed an integrated shutter device. The device includes a thermal absorber shutter, a piezoelectric ceramic fast shutter, a vacuum chamber and an adjustable height base. Firstly SPECTRA and ANSYS were used to verify the device’s institutional temperature reliability at a thermal power density of 64W/mm2. In addition, the device is suitable for both monochromatic and pink light operation with a horizontal pitch of 15mm. The device is also compatible with both vacuum and atmospheric working environments, and the recollimation of the device is not necessary when switching modes. Finally, the thermal absorber shutter is also able to function as a beam profile monitor, and the position of the spot can be monitored through a viewing window on the cavity.  
poster icon Poster TUPYP038 [0.781 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP038  
About • Received ※ 08 November 2023 — Revised ※ 10 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBM03
Progress and Core Technologies Development of Monochromators for HEPS  
 
  • H. Liang, M.W. Chen, X.B. Deng, Q.S. Diao, L. Gao, Z. Hong, G. Li, M. Li, Z.K. Liu, Y.S. Lu, D.S. Shen, W.F. Sheng, S.F. Wang, Y. Yang, Z.Y. Yue, L. Zhang, S. Zhang, Y.S. Zhang, A.Y. Zhou
    IHEP, Beijing, People’s Republic of China
 
  HEPS is the first low emittance 4th generation light source in China, as monochromators are often limiting the performance of beamlines, many challenges are faced to preserve the quality of the beam. In order to meet the stringent and versatile requirements of 12 in house developed monochromators for different beamlines, several core technologies have been studied and developed. Stability considerations, vibration measurement system and methods are introduced, stability below 10 nrad RMS are measured for operation conditions by laser interferometers. Thermal resistance study at low temperature was carried out, enabling more accurate FEA of cooling. Clamping deformation of crystals at low temperature are experimentally studied, slope errors below 0.1 microradian RMS are measured. Design and test results on different types of monochromators will also be presented. Results show that the in house developed monochromators are able to meet the requirements of HEPS beamlines.  
slides icon Slides THOBM03 [8.445 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)