Paper | Title | Page |
---|---|---|
TUPYP022 | The Development and Application of Motion Control System for HEPS Beamline | 61 |
|
||
In synchrotron radiation facilities such as the High Energy Photon Source (HEPS) beamline, thousands of motorized actuators are equipped on different optical devices, such as K-B mirrors, monochromator and transfocators, in order to acquire the specified properties of X-ray. The motion control system, as a part of the ultra-precision mechatronics devices, is used to precison positioning control, which not only has ability to realize basic motion functions but also can handle complex motion control requirements. HEPS has developed a standardized motion control system(MCS) for synchrotron radiation applications. In this paper, The structure of hardware and software of MCS will be presented, and some applications are demonstrated in detail. | ||
Poster TUPYP022 [0.847 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP022 | |
About • | Received ※ 30 October 2023 — Revised ※ 03 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 12 April 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPYP034 |
A New Design of X-ray White Beam Profile Monitor for HEPS Beamlines | |
|
||
The development of x-ray white beam profile monitor is to realize the visual detection of beam contour and position under the condition of high energy and high heat load of HEPS fourth-generation light source. The device includes a electric drive system, an imaging system, and a copper-cooled CVD diamond monitor. SPECTRA and ANSYS were used to verify the mechanism temperature reliability when monitor being used in different HEPS beamlines at current of 200 mA. At the same time, the functional verification of the experimental prototype was carried out on the 3W1 high energy test beamline of BSRF, white beam fluorescence images were successfully obtained. During the test of Multilayer Monochromator for Structural Dvnamics Beamline(HEPS), the change images of white and monochromatic beam profiles and curve of intensity distribution during crystal adjustment are successfully obtained, which verificates the processing function of the monitor for beam profile and intensity distribution. | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPYP039 | A Design of an X-ray Monochromatic Adjustable Slit for HEPS Beamlines | 88 |
|
||
The monochromatic slit is a commonly used device in HEPS beamlines. It can limit the synchrotron beam-spot within a desired size required by the downstream optical equipment. In addition, the four-blade structure is the most widely used form of slit. The slit with this form usually consists of a pair or two parallel tungsten carbide blades. With their edges close to each other, a slit can be formed, and the size of which can be controlled by micromechanical guides. This structure is very suitable for the case of large beamsize. In this work, we have designed a monochromatic slit based on the four-blade form for BF-beamline in HEPS. It can be used in ultra-high vacuum, high luminous flux working environment. The maximum opening range is up to 30mm*10mm (H*V), while it can allow a white beam of 136mm*24mm (H*V) to pass through. Furthermore, we adopted a point to surface contact design, which can effectively avoid the over-constraint problem between two guide rails. | ||
Poster TUPYP039 [0.457 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP039 | |
About • | Received ※ 10 November 2023 — Revised ※ 10 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 18 July 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |