Author: Xu, W.
Paper Title Page
TUPYP017 Design and Test of Precision Mechanics for High Energy Resolution Monochromator at the HEPS 51
 
  • L. Zhang, H. Liang, Z.K. Liu, W. Xu, Y. Yang, Y.S. Zhang
    IHEP, Beijing, People’s Republic of China
 
  A monochromator stands as a typical representative of optical component within synchrotron radiation light sources. High resolution monochromators (HRMs), which incorporate precision positioning, stability control, and various other technologies, are a crucial subclass within this category. The next generation of photon sources imposes higher performance standards upon these HRMs. In this new design framework, the primary focus is on innovating precision motion components. Rigorous analysis and experimentation have confirmed the effectiveness of this design. This structural model provides valuable reference for developing other precision adjustment mechanisms within the realm of synchrotron radiation.  
poster icon Poster TUPYP017 [3.641 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP017  
About • Received ※ 01 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 04 February 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPPP016 Mechanical Design of XRS & RIXS Multi-Functional Spectrometer at the High Energy Photon Source 178
 
  • J.C. Zhang, Z.Y. Guo, X. Jia, S.X. Jin, Z.N. Ou, W.F. Sheng, S. Tang, R.Z. Xu, W. Xu, Y.J. Zhang
    IHEP, Beijing, People’s Republic of China
 
  The integration of an X-ray Raman spectroscopy (XRS) spectrometer and a Resonant Inelastic X-ray scattering (RIXS) spectrometer at HEPS is described. The XRS has 6 regular modular groups and 1 high resolution modular group. In total 90 pieces of spherically bent analyzer crystals are mounted in low vacuum chambers with pressure lower than 100Pa. On the other hand, the RIXS spectrometer possesses one spherically bent analyzer crystal configured in Rowland geometry whose diameter is changeable from 1m to 2m. The scattering X-ray photons transport mostly in helium chamber to reduce absorption by air. The RIXS and the high resolution module can be exchanged when needed. Six air feet are set under the granite plate to unload the weight when the heavy spectrometer is aligned. The natural frequency and statics of the main granite rack were analyzed and optimized to maintain high stability for the HEPS-ID33 beamline at the 4th generation source. A type of compact and cost-effective adjustment gadget for the crystals was designed and fabricated. Economic solutions in selection of motors and sensors and other aspects were adopted for building the large spectrometer like this.  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP016  
About • Received ※ 02 November 2023 — Revised ※ 06 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 11 April 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)