Paper | Title | Page |
---|---|---|
TUPYP012 |
Mechanical Design of Water-cooled White Beam Collimating Bent Mirror System at HEPS | |
|
||
The main function of the Water-cooled White Beam Collimating Bent Mirror is to align the synchrotron radiation light to improve the resolution of its downstream monochromator; It also absorbs heat and reduces the heat load transmitted to the monochromator. Therefore, the accuracy of its posture directly affects the quality of the output beam. This article discusses the design of the device. It is mainly divided into 3 parts. The bending mechanism uses constant external force to elastically bend the optical elements to obtain the required surface shape. The cooling mechanism is used to reduce the thermal deformation of the mirror surface, thus reducing the surface error of the mirror. The overall mechanical system provides 5-DOF attitude adjustment. Based on this, this design adopts a combination scheme of a four-bar bender with independent bending moment, the copper blades inserted in the GaIn eutectic filled trough solution and 5-DOF attitude adjustment of multi-layer granite. Through a series of calculations, simulations and tests, it is demonstrated that the design indexes meet the requirements, thus verifying the feasibility of the scheme. | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPYP044 |
Development of Typical Nano-KB/AKB Mirrors Mechanical System at HEPS | |
|
||
Nano-KB/AKB mirrors are used to focus spot size to the nanometer level in main performance beamlines at HEPS, including the Hard X-ray Nanoprobe Multimodal Imaging Beamline(NAMI Beamline), the Hard X-ray Coherent Scattering Beamline(HXCS Beamline), and X-ray Absorption Spectroscopy Beamline(XAS Beamline), etc. For the typical Nano-KB/AKB mirrors mechanical system, a common design of the mounting and clamping mechanisms and the adjustment mechanisms is presented. There are also the key components of the Nano-KB/AKB mirrors mechanical system. Currently, through the design and optimisation of the mechanical structure and the corresponding finite element analysis(FEA), the first Nano-KB mirrors mechanical system at HEPS has been fabricated, and the large travel range, high resolution and high stability adjustments mechanisms are achieved, the slope error of the Nano-KB mirrors is well ensured simultaneously, and the test results are consistent with the design. | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPPP016 | Mechanical Design of XRS & RIXS Multi-Functional Spectrometer at the High Energy Photon Source | 178 |
|
||
The integration of an X-ray Raman spectroscopy (XRS) spectrometer and a Resonant Inelastic X-ray scattering (RIXS) spectrometer at HEPS is described. The XRS has 6 regular modular groups and 1 high resolution modular group. In total 90 pieces of spherically bent analyzer crystals are mounted in low vacuum chambers with pressure lower than 100Pa. On the other hand, the RIXS spectrometer possesses one spherically bent analyzer crystal configured in Rowland geometry whose diameter is changeable from 1m to 2m. The scattering X-ray photons transport mostly in helium chamber to reduce absorption by air. The RIXS and the high resolution module can be exchanged when needed. Six air feet are set under the granite plate to unload the weight when the heavy spectrometer is aligned. The natural frequency and statics of the main granite rack were analyzed and optimized to maintain high stability for the HEPS-ID33 beamline at the 4th generation source. A type of compact and cost-effective adjustment gadget for the crystals was designed and fabricated. Economic solutions in selection of motors and sensors and other aspects were adopted for building the large spectrometer like this. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP016 | |
About • | Received ※ 02 November 2023 — Revised ※ 06 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 11 April 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THOAM04 | Overall Progress on Development of X-ray Optics Mechanical Systems at High Energy Photon Source (HEPS) | 252 |
|
||
Funding: This work is supported by the project of High Energy Photon Source (HEPS). High Energy Photon Source (HEPS) regarded as a new 4th generation synchrotron radiation facility, is under construction in a virgin green field in Beijing, China. The X-ray optics/mirror mechanical systems (MMS) play an important role, which would be expected to be designed carefully and rigidly for the extremely stable performance requirement of HEPS. In addition, there are indeed big challenges due to so many types of mirror systems, such as white beam mirror (WBM), harmonic suppression mirror (HSM), combined deflecting mirror (CDM), bending mirror, Nano-KB, and the transfocator of Compound refractive lens (CRLs), etc. Therefore, overall progress on design and maunfacturing of the MMS is introduced, in which a promoting strategy and generic mirror mechanical system as a key technology is presented and developed for the project of HEPS. Furthermore, ultra-stable structucture, multi-DOF precision positioning, Eutectic Galium Indium (E-GaIn)-based vibration-decoupling watercooling, clamping, and bending have always been prior designs and considerations. Shanzhi Tang, Weifan Sheng, Jianye Wang, et al, Overall progress on the design of mirror mechanical systems at High Energy Photon Source (HEPS), SRI2021, Hamburg Germany, 2022. POSTER |
||
Slides THOAM04 [2.328 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-THOAM04 | |
About • | Received ※ 30 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 18 July 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPPP021 |
Ultra-Stable and Multi-DOF Bent KB Mirror Mechanical System for Hard X-Ray High Energy Resolution Spectroscopy (HX-HERS) Beamline of HEPS | |
|
||
The KB mirror system designed for the HX-HERS beamline was expected to focus the spot size down to 2¿m×2¿m and achieve 5-DOF adjustment of each mirror. However, the long mirror length leaded large size of the overall mechanism and the limited height space for multi-dimensional adjustment makes the mechanical design of the KB system with both stability and functionality difficult. In this KB system, each mirror is bent by a four-bar bender universally used in HEPS to obtain the required profile. A combination of parallel and serial mechanism with totally 11-DOF is designed to realize the adjustment requirements. Specifically, the parallel mechanism is a three-point support design that serves as the base of the KB mirror chamber and offers coarse tuning of 5-DOF, exhibiting great compactness and high stiffness. The series mechanism is a stacking of four angle and two displacement adjustment mechanisms up to 6-DOF. These independent stages with high resolution are assigned to VFM and HFM respectively to achieve fine adjustment of their relative positions. In the design of each angle and displacement adjustment stage, the height and rigidity of the mechanism are also fully considered. | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |