Author: Mo, G.
Paper Title Page
TUPYP023 Design of a Long Versatile Detector Tube System for Pink Beam Small-Angle X-Ray Scattering (SAXS) Beamline at HEPS 64
 
  • Z.Q. Cui, G. Mo, Z.N. Ou, S. Tang, X. Xing, J.C. Zhang
    IHEP, Beijing, People’s Republic of China
 
  The long versatile detector tube system for small-angle X-ray scattering meets the experimental conditions of -5-50° wide-angle X-ray scattering (WAXS), 0.04-6° small-angle X-ray scattering (SAXS) and 0.001-0.1° ultra-small-angle X-ray scattering (USAXS), record the same change process of the same sample, and obtain comprehensive structural information of atomic size, nanometer size and micron size, which can be applied to nanomaterials, mesoporous materials, biological macromolecules, polymers and other fields. The size of the tube system is 26760×1945×2565 mm,and consists of four parts: WAXS device, SAXS device, USAXS device and vacuum chamber. The vacuum chamber is assembled by connecting and assembling parts such as thick and fine pipes, bellows, heads and vacuum valves, with a length of 13775 mm and an inner diameter of 1500mm. The thin pipe is 7740 mm long and has an inner diameter of 300 mm. The design scheme of the tube system is committed to ensuring that the distance between the SAXS detector and the sample is continuously adjustable within the range of 1-13.5 m in vacuum environment, and the straightness of the 13840 mm long track of the SAXS device is better than 1 mm.  
poster icon Poster TUPYP023 [1.737 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP023  
About • Received ※ 02 November 2023 — Revised ※ 03 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 25 January 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPYP038 A Design of an X-Ray Pink Beam Integrated Shutter for HEPS 85
 
  • S. Liu, Q. Han, G. Mo, A.Y. Zhou
    IHEP, Beijing, People’s Republic of China
 
  The main function of the shutter is to accurately control the exposure time of the sample so that the sample as well as the detector can be protected. In order to cover the high thermal load and high energy working environment, we designed an integrated shutter device. The device includes a thermal absorber shutter, a piezoelectric ceramic fast shutter, a vacuum chamber and an adjustable height base. Firstly SPECTRA and ANSYS were used to verify the device’s institutional temperature reliability at a thermal power density of 64W/mm2. In addition, the device is suitable for both monochromatic and pink light operation with a horizontal pitch of 15mm. The device is also compatible with both vacuum and atmospheric working environments, and the recollimation of the device is not necessary when switching modes. Finally, the thermal absorber shutter is also able to function as a beam profile monitor, and the position of the spot can be monitored through a viewing window on the cavity.  
poster icon Poster TUPYP038 [0.781 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP038  
About • Received ※ 08 November 2023 — Revised ※ 10 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPPP039 Data Preprocessing Method of High-Frequency Sampling XAFS Spectra Collected in a Novel Combined SAXS/XRD/XAFS Technique 207
 
  • Y.P. Liu, Z.J. Chen, G. Mo, Z.H. Wu
    IHEP, Beijing, People’s Republic of China
 
  High-frequency (HF) sampling X-ray absorption fine structure (XAFS) spectra with a time-resolution of ~8s were collected in our newly developed synchrotron radiation small-angle X-ray scattering (SAXS)/X-ray diffraction (XRD)/XAFS combined technique. Restoring the HF XAFS spectrum which contains hundreds of thousands to millions of data points to a normal XAFS spectrum consisting of hundreds of data points is a critical step for the subsequent neighbor structure analysis. Herein, the data preprocessing method and procedure of HF XAFS spectra were proposed according to the absorption edge of the standard sample and the rotation angular velocity of the monochromator. This work is expected to facilitate the potential applications of HF XAFS spectra in a time-resolved SAXS/XRD/XAFS experiment.  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP039  
About • Received ※ 31 October 2023 — Revised ※ 05 November 2023 — Accepted ※ 07 November 2023 — Issued ※ 18 May 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPPP049 Designs of Multiple Experimental Models for Pink SAXS Station 226
 
  • G. Mo, Z.J. Chen, Z.Q. Cui, Z.H. Li, Y.P. Liu, Y. Tian, Z.H. Wu, X. Xing
    IHEP, Bejing, People’s Republic of China
 
  Pink SAXS (small angle X-ray scattering) station is dedicated to performing scattering experiments. A classical planar undulator is adopted as the beam source. The pink beam from the fundamental radiation of the undulator at the range of 8-12keV will be used directly after reflected by a pure silicon reflector. The high flux pink beam will be used to perform high time-resolution SAXS experiments. Monochromatic beam, which is obtained by a normal horizontal monochromator, also can be used alternately to perform high energy resolution experiments. Monochromatic beam and pink beam can be switched through moving in and out of the monochromator. The scattering background is reduced effectively using three sets of scatterless slits. Three diamond compound refractive lenses with different curvatures are employed to focus the 12keV monochromatic beam at sample position, detector position and infinite position respectively. A totally 24 meters long vacuum detector tube is adopted as SAXS camera. Three vacuum compatibility EIGER detectors are equipped at different positions to collect WAXS, SAXS and USAXS signals respectively. Then simultaneous USAXS/SAXS/WAXS measurement could be performed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-WEPPP049  
About • Received ※ 01 November 2023 — Revised ※ 05 November 2023 — Accepted ※ 09 November 2023 — Issued ※ 01 July 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)