Paper |
Title |
Page |
TUOAM04 |
New Developments and Status of XAIRA, the New Microfocus MX Beamline at the ALBA Synchrotron |
5 |
|
- N. González, C. Colldelram, A. Crisol, D. Garriga, J. Juanhuix, J. Nicolàs, M. Quispe, I. Šics
ALBA-CELLS, Cerdanyola del Vallès, Spain
|
|
|
The new BL06-XAIRA microfocus macromolecular crystallography beamline at ALBA synchrotron is currently under commissioning and foreseen to enter into user operation in 2024. The aim of XAIRA is to provide a 4-14 keV, stable, high flux beam, focused to 3×1 µm2 FWHM. The beamline includes a novel monochromator design combining a cryocooled Si(111) channel-cut and a double multilayer diffracting optics for high stability and high flux; and new mirror benders with dynamical thermal bump and figure error correctors. In order to reduce X-ray parasitic scattering with air and maximize the photon flux, the entire end station, including sample environment, cryostream and detector, is enclosed in a helium chamber. The sub-100nm SoC diffractometer, based on a unique helium bearing goniometer also compatible with air, is designed to support fast oscillation experiments, raster scans and helical scans while allowing a tight sample to detector distance. The beamline is also equipped with a double on-axis visualization system for sample imaging at sub-micron resolutions. The general status of the beamline is presented here with particular detail on the in-house fully developed end station design.
|
|
|
Slides TUOAM04 [6.526 MB]
|
|
DOI • |
reference for this paper
※ doi:10.18429/JACoW-MEDSI2023-TUOAM04
|
|
About • |
Received ※ 27 October 2023 — Revised ※ 03 November 2023 — Accepted ※ 10 November 2023 — Issued ※ 15 May 2024 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPPP035 |
Design and Fluid Dynamics Study of a Recoverable Helium Sample Environment System for Optimal Data Quality in the New Microfocus MX Beamline at the ALBA Synchrotron Light Source |
203 |
|
- M. Quispe, J.J. Casas, C. Colldelram, D. Garriga, N. González, J. Juanhuix, J. Nicolàs, Y. Nikitin
ALBA-CELLS, Cerdanyola del Vallès, Spain
- M. Rabasa
ESEIAAT, Terrassa, Spain
|
|
|
XAIRA is the new microfocus MX beamline under construction at the ALBA Synchrotron Light Source. For its experiments, the quality will be optimized by enclosing all the end station elements, including the diffractometer in a helium chamber, so that the background due to air scattering is minimized and the beam is not attenuated in the low photon energy range, down to 4 keV. This novel type of chamber comes with new challenges from the point of view of stability control and operation in low pressure conditions while enabling the recovery of the consumed helium. In particular, it is planned to collect the helium gas with a purity > 99.5% and then to recover the gas at the ALBA Helium Liquefaction Plant. Besides, the circuit includes a dedicated branch to recirculate the helium used by the goniometer bearing at the diffractometer. This paper describes the fluid dynamic conceptual design of the Helium chamber and its gas circuit, as well as numerical results based on one-dimensional studies and Computational Fluid Dynamics (CFD).
|
|
|
Poster WEPPP035 [1.794 MB]
|
|
DOI • |
reference for this paper
※ doi:10.18429/JACoW-MEDSI2023-WEPPP035
|
|
About • |
Received ※ 24 October 2023 — Revised ※ 04 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 18 June 2024 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|